(本小題滿分14分)
已知函數(shù)

有且只有兩個(gè)相異實(shí)根0,2,且
(Ⅰ)求函數(shù)

的解析式;
(Ⅱ)已知各項(xiàng)均不為1的數(shù)列

滿足

,求通

,
(Ⅲ)設(shè)

,求數(shù)列

的前

項(xiàng)和

.
解:(Ⅰ)由

得


(Ⅱ)

即為

①
當(dāng)

②
①-②則

,


所以
(Ⅲ)由(Ⅱ)知

,所以

故

③
上式兩邊乘以

得

④
③+④得

∴

練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(10分)已知函數(shù)
(1)判斷函數(shù)

在區(qū)間

上的單調(diào)性;(2)若當(dāng)

時(shí),

恒成立,求正整數(shù)

的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知

:函數(shù)

的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185434050204.gif" style="vertical-align:middle;" />;

如果命題“

為真,

為假”,求實(shí)數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分9分)
已知函數(shù)

。
(Ⅰ)當(dāng)

時(shí),求函數(shù)

的單調(diào)遞增區(qū)間;
(Ⅱ)求

的極大值;
(Ⅲ)求證:對于任意

,函數(shù)

在

上恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題9分)設(shè)函數(shù)

。
(1)求

的值;
(2)求

的最小值及

取最小值時(shí)

的集合;(3)求

的單調(diào)遞增區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)

的最小值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)

的遞增區(qū)間是( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)

的單調(diào)遞增區(qū)間是
A. | B.(0,2) | C.(1,3) | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
曲線C:

在

處的切線方程為
查看答案和解析>>