日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=(x-a)2(x+b)ex,a、b∈R,x=a是f(x)的一個(gè)極大值點(diǎn);
          (Ⅰ)若a=0,求b的取值范圍;
          (Ⅱ) 當(dāng)a是給定的實(shí)常數(shù),設(shè)x1x2x3是f(x)的3個(gè)極值點(diǎn),問是否存在實(shí)數(shù)b,可找到x4∈R,使得x1,x2,x3,x4的某種排列x1,x2,x3,x4(其中{i1,i2,i3}={1,2,3,4})依次成等差數(shù)列?若存在,求所有的b及相應(yīng)的x4;若不存在,說明理由、
          分析:(I)由函數(shù)f(x)=(x-a)2(x+b)ex,我們易求出a=0時(shí),函數(shù)的解析式及其導(dǎo)函數(shù)的解析式,構(gòu)造函數(shù)g(x)=x2+(b+3)x+2b,結(jié)合x=a是f(x)的一個(gè)極大值點(diǎn),我們分析函數(shù)g(x)=x2+(b+3)x+2b的兩個(gè)零點(diǎn)與0的關(guān)系,即可確定b的取值范圍;
          (Ⅱ)由函數(shù)f(x)=(x-a)2(x+b)ex,我們易求出f'(x)的解析式,由(I)可得x1、a、x2是f(x)的三個(gè)極值點(diǎn),且x1=
          (a-b-3)-
          (a+b-1)2+8
          2
          x2=
          (a-b-3)+
          (a+b-1)2+8
          2
          ,分別討論x1、a、x2是x1,x2,x3,x4的某種排列構(gòu)造等差數(shù)列時(shí)其中三項(xiàng),即可得到結(jié)論.
          解答:解:(Ⅰ)解:a=0時(shí),f(x)=x2(x+b)ex,∴f'(x)=[x2(x+b)]ex+x2(x+b)(ex=exx[x2+(b+3)x+2b],
          令g(x)=x2+(b+3)x+2b,∵△=(b+3)2-8b=(b-1)2+8>0,∴設(shè)x1<x2是g(x)=0的兩個(gè)根,
          (1)當(dāng)x1=0或x2=0時(shí),則x=0不是極值點(diǎn),不合題意;
          (2)當(dāng)x1≠0且x2≠0時(shí),由于x=0是f(x)的極大值點(diǎn),故x1<0<x2.∴g(0)<0,即2b<0,∴b<0.
          (Ⅱ)解:f'(x)=ex(x-a)[x2+(3-a+b)x+2b-ab-a],
          令g(x)=x2+(3-a+b)x+2b-ab-a,則△=(3-a+b)2-4(2b-ab-a)=(a+b-1)2+8>0,
          于是,假設(shè)x1,x2是g(x)=0的兩個(gè)實(shí)根,且x1<x2
          由(Ⅰ)可知,必有x1<a<x2,且x1、a、x2是f(x)的三個(gè)極值點(diǎn),
          x1=
          (a-b-3)-
          (a+b-1)2+8
          2
          ,x2=
          (a-b-3)+
          (a+b-1)2+8
          2

          假設(shè)存在b及x4滿足題意,
          (1)當(dāng)x1,a,x2等差時(shí),即x2-a=a-x1時(shí),
          則x4=2x2-a或x4=2x1-a,
          于是2a=x1+x2=a-b-3,即b=-a-3.
          此時(shí)x4=2x2-a=a-b-3+
          (a+b-1)2+8
          -a=a+2
          6

          或x4=2x1-a=a-b-3-
          (a+b-1)2+8
          -a=a-2
          6

          (2)當(dāng)x2-a≠a-x1時(shí),則x2-a=2(a-x1)或(a-x1)=2(x2-a)
          ①若x2-a=2(a-x1),則x4=
          a+x2
          2
          ,
          于是3a=2x1+x2=
          3(a-b-3)-
          (a+b-1)2+8
          2
          ,
          (a+b-1)2+8
          =-3(a+b+3)

          兩邊平方得(a+b-1)2+9(a+b-1)+17=0,∵a+b+3<0,于是a+b-1=
          -9-
          13
          2
          ,
          此時(shí)b=-a-
          7+
          13
          2

          此時(shí)x4=
          a+x2
          2
          =
          2a+(a-b-3)-3(a+b+3)
          4
          =-b-3=a+
          1+
          3
          2

          ②若(a-x1)=2(x2-a),則x4=
          a+x1
          2
          ,
          于是3a=2x2+x1=
          3(a-b-3)+
          (a+b-1)2+8
          2
          ,
          (a+b-1)2+8
          =3(a+b+3)

          兩邊平方得(a+b-1)2+9(a+b-1)+17=0,∵a+b+3>0,于是a+b-1=
          -9+
          13
          2
          ,
          此時(shí)b=-a-
          7-
          13
          2

          此時(shí)x4=
          a+x1
          2
          =
          2a+(a-b-3)-3(a+b+3)
          4
          =-b-3=a+
          1-
          13
          2

          綜上所述,存在b滿足題意,
          當(dāng)b=-a-3時(shí),x4=a±2
          6
          ,
          b=-a-
          7+
          13
          2
          時(shí),x4=a+
          1+
          13
          2
          ,
          b=-a-
          7-
          13
          2
          時(shí),x4=a+
          1-
          13
          2
          點(diǎn)評(píng):本題主要考查函數(shù)極值的概念、導(dǎo)數(shù)運(yùn)算法則、導(dǎo)數(shù)應(yīng)用及等差數(shù)列等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力、分類討論等綜合解題能力和創(chuàng)新意識(shí).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
          ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
          其中真命題的個(gè)數(shù)為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

          設(shè)函數(shù)f(x)=x(x-1)2,x>0.
          (1)求f(x)的極值;
          (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
          (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          設(shè)函數(shù)f(x)=x(x-1)2,x>0.
          (1)求f(x)的極值;
          (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
          (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案