日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若已知二次函數(shù)y=f(x)的圖象過原點,且1≤f(-1)≤2,3≤f(1)≤4.求f(-2)的范圍.

          思路分析:用解方程的思想或待定系數(shù)法,視f(-1),f(1)為整體,找到f(-2)=mf(-1)+nf(1),求出m,n,再求f(-2)的范圍.

          解法一:∵f(x)過原點,∴可設(shè)f(x)=ax2+bx.

          ∴f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,3≤f(1)≤4,

          ∴6≤f(-2)≤10.

          解法二:設(shè)f(x)=ax2+bx,則f(1)=a+b,f(-1)=a-b.令m(a+b)+n(a-b)=f(-2)=4a-2b,

          ∴f(-2)=(a+b)+3(a-b)=f(1)+3f(-1).

          ∵1≤f(-1)≤2,3≤f(1)≤4,

          ∴6≤f(-2)≤10.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)的圖象為開口向下的拋物線,且對任意x∈R都有f(1-x)=f(1+x).若向量
          a
          =(
          m
          ,-1
          ),
          b
          =(
          m
          ,-2
          ),則滿足不等式f(
          a
          b
          )>f(-1)的m的取值范圍為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)的圖象如圖所示.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)在區(qū)間[t,t+2]上的最大值h(t);
          (Ⅲ)若g(x)=6lnx+m,問是否存在實數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)的圖象關(guān)于直線x=2對稱,且在x軸上截得的線段長為2.若f(x)的最小值為-1,求:
          (1)函數(shù)f(x)的解析式;
          (2)函數(shù)f(x)在[t,t+1]上的最小值g(t).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)的圖象與x軸交于(0,0),(2,0)且有最大值為1.
          (1)求y=f(x)的解析式;
          (2)設(shè)g(x)=|f(x)|,畫出g(x)的大致圖象,并指出g(x)的單調(diào)區(qū)間;
          (3)若方程g(x)=m恰有四個不同的解,根據(jù)圖象指出實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習冊答案