日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1) 在直角坐標系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
          (2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個小時,留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識分析,這一小時內(nèi)游戲莊家是贏是賠? 通過計算,你得到什么啟示?
          (1).
          (2)~B(7,). 一小時內(nèi)有80人次玩.游戲莊家通常獲純利為(2+×)80=225(元)
          答:莊家當然是贏家!我們應(yīng)當學(xué)會以所學(xué)過的知識為武器,勸說人們不要被這類騙子的騙術(shù)所迷惑.                               16分

          試題分析:設(shè)P(x,y),則由條件知M().由于M點在C1上,所以
            即 
          從而的參數(shù)方程為    為參數(shù))  4分
          ∴ 曲線的極坐標方程為,曲線的極坐標方程為
          射線的交點的極徑為,
          射線的交點的極徑為
          所以.  8分
          (2)

          解:游人每玩一次,設(shè)游戲莊家獲利為隨機變量(元);游人每放一球,小球落入球槽,相當于做7次獨立重復(fù)試驗,設(shè)這個小球落入鐵釘空隙從左到右的次序為隨機變量+1,
          ~B(7,).  10分
          因為P(=-4)=P(=0或=7)=P(=0)+P(=7)=+=
          P(=-2)=P(=1或=6)=P(=1)+P(=6)=+=
          P(=0)=P(=2或=5)=P(=2)+P(=5)=+=
          P(=2)=P(=3或=4)=P(=3)+P(=4)=+=
          2+E=2+(-4)×+(-2)×+0×+2×=2+,   14分
          一小時內(nèi)有80人次玩.游戲莊家通常獲純利為(2+×)80=225(元)
          答:莊家當然是贏家!我們應(yīng)當學(xué)會以所學(xué)過的知識為武器,勸說人們不要被這類騙子的騙術(shù)所迷惑.                               16分
          點評:綜合題,本題綜合考查簡單曲線的參數(shù)方程、極坐標方程,獨立重復(fù)試驗概率計算,隨機變量的分布列及數(shù)學(xué)期望。(2)作為應(yīng)用問題,寓教于樂,令人生趣。對計算能力要求較高。
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).
          (1) 求曲線的直角坐標方程以及曲線的普通方程;
          (2) 設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          (坐標系與參數(shù)方程選做題)已知直線為參數(shù))相交于兩點,則||=             .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          的圓心坐標是(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,已知拋物線C的極坐標方程為ρcos2θ=4sin θ(ρ≥0),直線l的參數(shù)方程為(t為參數(shù)),設(shè)直線l與拋物線C的兩交點為AB,點F為拋物線C的焦點,則|AF|+|BF|=__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          把極坐標方程ρ=2sin(+θ)化為直角坐標方程為          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          ⑴(坐標系與參數(shù)方程選做題)化極坐標方程為直角坐標方程為               .
          ⑵(不等式選擇題)不等式對任意恒成立的實數(shù)的取值范圍為_____________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          以坐標原點為極點,橫軸的正半軸為極軸的極坐標系下,有曲線C:,過極點的直線
          是參數(shù))交曲線C于兩點0,A,令OA的中點為M.
          (1)求點M在此極坐標下的軌跡方程(極坐標形式).
          (2)當時,求M點的直角坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若點P的極坐標為(2,),則該點的直角坐標為 (    )
          A.(, 1)B.(1,)C.(1,-)D.(,-1)

          查看答案和解析>>

          同步練習冊答案