日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形是平行四邊形,平面⊥平面,,,,,

          (Ⅰ)求證:平面

          (Ⅱ)求直線與平面所成角的正弦值.

          【答案】(1)見解析;(2)直線與平面所成角的正弦值為.

          【解析】

          1)利用中位線定理,先證明四邊形是平行四邊形,可得,再根據(jù)線面平行的判定定理即可證明;(2) 先判斷出直線與平面所成角即為直線與平面所成角, 過點(diǎn)于點(diǎn),連接,又可證明平面,所以直線與平面所成角即為,再根據(jù)余弦定理和解直角三角形即可求出結(jié)論.

          (1)取的中點(diǎn)為,連接,在中,

          因?yàn)?/span>的中點(diǎn),所以,

          又因?yàn)?/span>,所以,

          即四邊形是平行四邊形,所以

          平面,平面

          所以平面.

          (2)在中,,由余弦定理可,

          進(jìn)而可得,即

          又因?yàn)槠矫?/span>平面平面;平面平面,

          所以平面.

          又因?yàn)?/span>平面,

          所以平面平面.

          因?yàn)?/span>,

          所以直線與平面所成角即為直線與平面所成角.

          過點(diǎn)于點(diǎn),連接

          又因?yàn)槠矫?/span>平面,

          所以平面,

          所以直線與平面所成角即為.

          中,,由余弦定理可得

          所以,因此

          中,,所以直線與平面所成角的正弦值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) , 其中a∈R.若對任意的非零實(shí)數(shù)x1 , 存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
          A.k≤0
          B.k≥8
          C.0≤k≤8
          D.k≤0或k≥8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD.在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)BP=t.
          (I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
          (Ⅱ)設(shè)探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米),求S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某自行車手從O點(diǎn)出發(fā),沿折線O﹣A﹣B﹣O勻速騎行,其中點(diǎn)A位于點(diǎn)O南偏東45°且與點(diǎn)O相距20 千米.該車手于上午8點(diǎn)整到達(dá)點(diǎn)A,8點(diǎn)20分騎至點(diǎn)C,其中點(diǎn)C位于點(diǎn)O南偏東(45°﹣α)(其中sinα= ,0°<α<90°)且與點(diǎn)O相距5 千米(假設(shè)所有路面及觀測點(diǎn)都在同一水平面上).

          (1)求該自行車手的騎行速度;

          (2)若點(diǎn)O正西方向27.5千米處有個(gè)氣象觀測站E,假定以點(diǎn)E為中心的3.5千米范圍內(nèi)有長時(shí)間的持續(xù)強(qiáng)降雨.試問:該自行車手會(huì)不會(huì)進(jìn)入降雨區(qū),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,短軸長為,右焦點(diǎn)為 (1) 求橢圓的標(biāo)準(zhǔn)方程;(2) 若直線經(jīng)過點(diǎn)且與橢圓有且僅有一個(gè)公共點(diǎn),過點(diǎn)作直線交橢圓于另一點(diǎn) ①證明:當(dāng)直線與直線的斜率,均存在時(shí),.為定值;②求面積的最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:

          (1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過點(diǎn)M(3,2);

          (2)ca=5∶13,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離的和為26.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線交于,兩點(diǎn),

          (1)求的方程;

          (2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓C的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

          (Ⅰ)求直線l和圓C的極坐標(biāo)方程;

          (Ⅱ)設(shè)直線l和圓C相交于A,B兩點(diǎn),求弦AB與其所對劣弧所圍成的圖形面積.

          查看答案和解析>>

          同步練習(xí)冊答案