日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22、如圖所示,AB為⊙O的直徑,BC、CD為⊙O的切線,B、D為切點(diǎn).
          (1)求證:AD∥OC;
          (2)若⊙O的半徑為1,求AD•OC的值.
          分析:(1)要證明AD∥OC,我們要根據(jù)直線平行的判定定理,觀察已知條件及圖形,我們可以連接OD,構(gòu)造出內(nèi)錯角,只要證明∠1=∠3即可得證.
          (2)因?yàn)椤袿的半徑為1,而其它線段長均為給出,故要想求AD•OC的值,我們要將其轉(zhuǎn)化用半徑相等或相關(guān)的線段積的形式,結(jié)合(1)的結(jié)論,我們易證明Rt△BAD∽Rt△ODC,根據(jù)相似三角形性質(zhì),不們不難得到轉(zhuǎn)化的思路.
          解答:解:(1)如圖,連接BD、OD.
          ∵CB、CD是⊙O的兩條切線,
          ∴BD⊥OC,
          ∴∠2+∠3=90°
          又AB為⊙O直徑,
          ∴AD⊥DB,
          ∠1+∠2=90°,
          ∴∠1=∠3,
          ∴AD∥OC;
          (2)AO=OD,
          則∠1=∠A=∠3,
          ∴Rt△BAD∽Rt△ODC,
          AD•OC=AB•OD=2.
          點(diǎn)評:根據(jù)求證的結(jié)論,使用分析推敲證明過程中所需要的條件,進(jìn)而分析添加輔助線的方法,是平面幾何證明必須掌握的技能,大家一定要熟練掌握,而在(2)中根據(jù)已知條件分析轉(zhuǎn)化的方向也是解題的主要思想.解決就是尋找解題的思路,由已知出發(fā),找尋轉(zhuǎn)化方向和從結(jié)論出發(fā)尋找轉(zhuǎn)化方向要結(jié)合在一起使用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-1:幾何證明選講
          如圖所示,AB為⊙O的直徑,BC、CD為⊙O的切線,B、D為切點(diǎn)
          (1)求證:AD∥OC
          (2)若⊙O的半徑為1,求AD•OC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,AB為⊙O的直徑,BC、CD為⊙O的切線,B、D為切點(diǎn).
          (I)求證:∠BOC=∠ODA;
          (II)若AD=OD=1,過D點(diǎn)作DE垂直于BC,交BC于點(diǎn)E,且DE交OC于點(diǎn)F,求OF:FC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011屆黑龍江省大慶實(shí)驗(yàn)中學(xué)高三高考仿真模擬試題理數(shù) 題型:解答題


          22.(本小題滿分10分)選修4—1:幾何證明選講
          如圖所示,AB為⊙O的直徑,BC、CD為⊙O′的切線,B、D為切點(diǎn)
          (1)求證:ADOC;
          (2)若⊙O的半徑為1,求AD·OC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年新疆高考第二次適應(yīng)性檢測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖所示,AB為⊙O的直徑,BC、CD為⊙O的切線,B、D為切點(diǎn).
          (I)求證:∠BOC=∠ODA;
          (II)若AD=OD=1,過D點(diǎn)作DE垂直于BC,交BC于點(diǎn)E,且DE交OC于點(diǎn)F,求OF:FC的值.

          查看答案和解析>>

          同步練習(xí)冊答案