日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖四棱錐中,底面是平行四邊形,平面,垂足為上且,,的中點(diǎn),四面體的體積為.

          (1)求過點(diǎn)P,C,B,G四點(diǎn)的球的表面積;
          (2)求直線到平面所成角的正弦值;
          (3)在棱上是否存在一點(diǎn),使,若存在,確定點(diǎn)的位置,若不存在,說明理由.

          (1);(2);(3)存在,.

          解析試題分析:(1)首先由四面體的體積可以求出高.
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/1/ysbk72.png" style="vertical-align:middle;" />兩兩垂直,所以以為同一頂點(diǎn)的三條棱構(gòu)造長方體,長方體的外接球即為過點(diǎn)P,C,B,G四點(diǎn)的球,其直徑就是長方體的體對角線.
          (2)由于面,所以只需在面ABCD內(nèi)過點(diǎn)D作交線BG的垂線,即可得PD在面PBG內(nèi)的射影,從而得PD與面PBG所成的角. (3)首先假設(shè)存在,然后確定的位置,若能在上找到點(diǎn)使則說明這樣的點(diǎn)F存在.是異面的兩條直線,我們通過轉(zhuǎn)化,轉(zhuǎn)化這相交的兩條直線的垂直問題.那么如何轉(zhuǎn)化?過交GC于,則只要即可.這樣確定的位置容易得多了.
          試題解析:(1)由四面體的體積為.∴.
          構(gòu)造長方體,外接球的直徑為長方體的體對角線。

                          3分
          (2)由
          為等腰三角形,GE為的角平分線,作交BG的延長線于K,

          由平面幾何知識可知: ,.設(shè)直線與平面所成角為
                                8分
          (3)假設(shè)存在,過交GC于,則必有.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/18/d/1grpg3.png" style="vertical-align:middle;" />,且,所以,又.

          ∴當(dāng)時(shí)滿足條件                    12分
          考點(diǎn):1、多面體的外接球及其表面積;2、線線與平面所成的角;3、異面直線的垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          四棱錐,底面為平行四邊形,側(cè)面底面.已知,,,為線段的中點(diǎn).

          (Ⅰ)求證:平面
          (Ⅱ)求面與面所成二面角大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角.

          (1)求證:平面A1B1C⊥平面B1BCC1;
          (2)求二面角A—B1C—B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱柱中,已知平面平面,.

          (1)求證:
          (2)若為棱的中點(diǎn),求證:平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱柱的底面是平行四邊形,且底面,,°,點(diǎn)中點(diǎn),點(diǎn)中點(diǎn).

          (Ⅰ)求證:平面平面;
          (Ⅱ)設(shè)二面角的大小為,直線與平面所成的角為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E為PA的中點(diǎn).

          (1)證明:DE∥平面PBC;
          (2)證明:DE⊥平面PAB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).

          (Ⅰ)求異面直線CC1和AB的距離;
          (Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在三棱柱中,

          (1)求證:;
          (2)若 ,在棱上確定一點(diǎn)P, 使二面角的平面角的余弦值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在三棱錐中,是邊長為2的正三角形,平面平面,,分別為的中點(diǎn).

          (1)證明:;
          (2)求銳二面角的余弦值;

          查看答案和解析>>

          同步練習(xí)冊答案