日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)當(dāng)時(shí),求曲線處的切線方程;
          (2)若在區(qū)間上函數(shù)的圖象恒在直線下方,求的取值范圍.

          (1);(2)

          解析試題分析:(1)先求導(dǎo)函數(shù),由導(dǎo)數(shù)的幾何意義知,利用直線的點(diǎn)斜式方程求切線方程;(2)由題意,不等式恒成立,對(duì)于恒成立問題可考慮參變分離,也可以構(gòu)造函數(shù)法,本題構(gòu)造函數(shù),等價(jià)于,故利用導(dǎo)數(shù)求函數(shù)的最大值,求的根,得,討論根的大小并和定義域比較,同時(shí)要注意分子二次函數(shù)的開口方向,通過判斷函數(shù)大致圖像,從而求函數(shù)的最大值,進(jìn)而列不等式求的取值范圍.
          試題解析:(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/24/b/1tfxz3.png" style="vertical-align:middle;" />.
          當(dāng)時(shí),,,則,又切點(diǎn)為,故曲線處的切線方程為
          (2)令定義域
          在區(qū)間上,函數(shù)的圖象恒在直線下方,等價(jià)于恒成立,即,令,得,
          當(dāng)時(shí),,故單調(diào)遞減,則,得;
          當(dāng)時(shí),,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,此時(shí),故不可能,不合題意;
          當(dāng)時(shí),單調(diào)遞增,,故不可能,不合題意.
          綜上:的取值范圍
          考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、導(dǎo)數(shù)在單調(diào)性上的應(yīng)用;3、利用導(dǎo)數(shù)求函數(shù)的極值、最值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)時(shí)取得極小值.
          (1)求實(shí)數(shù)的值;
          (2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/c/tcyos1.png" style="vertical-align:middle;" />?若存在,求出的值;
          若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)的定義域是,其中常數(shù).
          (1)若,求的過原點(diǎn)的切線方程.
          (2)當(dāng)時(shí),求最大實(shí)數(shù),使不等式對(duì)恒成立.
          (3)證明當(dāng)時(shí),對(duì)任何,有.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
          (2)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.
          (1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
          (2)當(dāng)時(shí),函數(shù)在區(qū)間上存在極值,求的最大值.
          (參考數(shù)值:自然對(duì)數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)圖像上一點(diǎn)處的切線方程為(1)求的值;(2)若方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍;(3)令如果的圖像與軸交于兩點(diǎn),的中點(diǎn)為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若的極值點(diǎn),求的極大值;
          (2)求的范圍,使得恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)..
          (1)設(shè)曲線處的切線為,點(diǎn)(1,0)到直線l的距離為,求a的值;
          (2)若對(duì)于任意實(shí)數(shù)恒成立,試確定的取值范圍;
          (3)當(dāng)是否存在實(shí)數(shù)處的切線與y軸垂直?若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知
          (1)求的單調(diào)增區(qū)間
          (2)若內(nèi)單調(diào)遞增,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案