已知函數(shù).
(1)若在
上是增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)若是
的極值點(diǎn),求
在
上的最小值和最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù)(
),
.
(Ⅰ)當(dāng)時(shí),解關(guān)于
的不等式:
;
(Ⅱ)當(dāng)時(shí),記
,過點(diǎn)
是否存在函數(shù)
圖象的切線?若存在,有多少條?若不存在,說明理由;
(Ⅲ)若是使
恒成立的最小值,對(duì)任意
,
試比較與
的大小(常數(shù)
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)若在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),方程
有實(shí)根,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù).
(Ⅰ)求函數(shù)的極大值;
(Ⅱ)若對(duì)滿足
的任意實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍(這里
是自然對(duì)數(shù)的底數(shù));
(Ⅲ)求證:對(duì)任意正數(shù)、
、
、
,恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù)。
(1)若在
處取得極值,求
的值;
(2)若在定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)設(shè),當(dāng)
時(shí),
求證:① 在其定義域內(nèi)恒成立;
求證:② 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).(
).
(1)當(dāng)時(shí),求函數(shù)
的極值;
(2)若對(duì),有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
為實(shí)常數(shù))。
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間
上無極值,求
的取值范圍;
(Ⅲ)已知且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題15分)已知函數(shù)圖象的對(duì)稱中心為
,且
的極小值為
.
(1)求的解析式;
(2)設(shè),若
有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)是否存在實(shí)數(shù),當(dāng)
時(shí),使函數(shù)
在定義域[a,b] 上的值域恰為[a,b],若存在,求出k的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)
設(shè)函數(shù)在
及
時(shí)取得極值.
(Ⅰ)求a、b的值(6分);
(Ⅱ)若對(duì)于任意的,都有
成立,求c的取值范圍(6分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com