日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)x>0時(shí),f(x)=x+,則f(x)的單調(diào)遞減區(qū)間是(    )

          A.(2,+∞)              B.(0,2)                C.(,+∞)              D.(0,)

          解析:令f′(x)=1-<0,得-<x<,又x>0,∴0<x<.∴函數(shù)f(x)的遞減區(qū)間為(0,).

          答案:D

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x2-3asin
          πx2
          ,且f(3)=6
          ,則實(shí)數(shù)a=
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2006•黃浦區(qū)二模)已知函數(shù)y=f(x)的定義域?yàn)镽+,對(duì)任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時(shí),f(x)<0.
          (1)求f(1)的值;
          (2)求證:當(dāng)x∈R+時(shí),恒有f(
          1x
          )=-f(x)

          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•崇明縣二模)若f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=
          1
          2-x
          ,以下命題:
          ①x>0時(shí),f(x)=
          1
          x-2
          ;
          ②f(x)在區(qū)間(0,+∞)單調(diào)遞增;
          ③f(x)的反函數(shù)f-1(x)的定義域?yàn)?span id="hk8xgeu" class="MathJye">(-
          1
          2
          ,
          1
          2
          );
          ④函數(shù)y=f(x)的圖象與函數(shù)y=f(x-s)-t的圖象關(guān)于點(diǎn)(
          s
          2
          ,
          t
          2
          )
          對(duì)稱.
          其中正確命題的個(gè)數(shù)是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省高三上學(xué)期第一次診斷性測(cè)試文科數(shù)學(xué)卷 題型:選擇題

          設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,則不等式<0的解集是(       )

          A.{x|-3<x<0或x>3}                        B.{x|x<-3或0<x<3}

          C.{x|x<-3或x>3}                           D.{x|-3<x<0或0<x<3}

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)y=f(x)的定義域?yàn)镽+,對(duì)任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時(shí),f(x)<0.
          (1)求f(1)的值;
          (2)求證:當(dāng)x∈R+時(shí),恒有f(
          1
          x
          )=-f(x)
          ;
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案