日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中,底面是平行四邊形,,平面

          1)證明:平面;

          2)求直線與平面所成角的正弦值.

          【答案】1)證明見解析;(2

          【解析】

          1)根據(jù)菱形對角線互相垂直及平面ABCD,由線面垂直的判定定理得到平面PBD;

          2)可直接作出線面角用幾何法求之,也可建立空間直角坐標系用向量法求之.

          底面ABCD是平行四邊形且,

          是菱形,即,

          平面ABCD,得,

          所以平面PBD

          )方法一(幾何法):

          BC的中點Q

          連結(jié)PQ,DQ,交AC于點G,

          過點G,連HC,

          在平行四邊形ABCD

          是正三角形,即點G為重心,

          平面ABCD,得,又,

          平面PDQ,所以面PDQ,

          由作法知,平面PBC,

          所以就是直線AC與平面PBC所成的角,

          設(shè),則,再由相似求得

          ,,

          所以直線AC與平面PBC所成角的正弦值是

          方法二(坐標法):

          PB的中點Q,以O為原點,分別以OAOB,OQ為軸建立空間直角坐標系,

          設(shè),則,,,

          ,,,

          設(shè)平面PBC法向量,

          ,

          ,

          記直線AC與平面PBC所成角為

          ,

          所以直線AC與平面PBC所成角的正弦值是

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=x2+acosx

          1)求函數(shù)fx)的奇偶性.并證明當(dāng)|a|2時函數(shù)fx)只有一個極值點;

          2)當(dāng)aπ時,求fx)的最小值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市房管局為了了解該市市民20181月至20191月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:萬元/平方米,進行了一次調(diào)查統(tǒng)計,制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市20181月至20191月期間當(dāng)月在售二手房均價(單位:萬元平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應(yīng)20181月至20191月).

          1)試估計該市市民的平均購房面積.

          2)現(xiàn)采用分層抽樣的方法從購房面積位于40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率.

          3)根據(jù)散點圖選兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值,如下表所示:

          0.000591

          0.000164

          0.00050

          請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預(yù)測20196月份的二手房購房均價(精確到0.001./span>

          參考數(shù)據(jù):,,,,,,

          參考公式:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),給出下列四個結(jié)論:

          ①函數(shù)的最小正周期是;

          ②函數(shù)在區(qū)間上是減函數(shù);

          ③函數(shù)的圖象關(guān)于直線對稱;

          ④函數(shù)的圖象可由函數(shù)的圖象向左平移個單位得到其中所有正確結(jié)論的編號是(

          A.①②B.①③C.①②③D.①③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面,,,點為棱的中點

          1)證明:;

          2)若為棱上一點,滿足,求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左右焦點分別為F1F2,右頂點為A,P為橢圓C上任意一點.已知的最大值為3,最小值為2.

          1)求橢圓C的方程;

          2)若直線ly=kx+m與橢圓C相交于MN兩點(MN不是左右頂點),且以MN為直徑的圓過點A.求證:直線l過定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某科研團隊研發(fā)了一款快速檢測某種疾病的試劑盒.為了解該試劑盒檢測的準確性,質(zhì)檢部門從某地區(qū)(人數(shù)眾多)隨機選取了位患者和位非患者,用該試劑盒分別對他們進行檢測,結(jié)果如下:

          1)從該地區(qū)患者中隨機選取一人,對其檢測一次,估計此患者檢測結(jié)果為陽性的概率;

          2)從該地區(qū)患者中隨機選取人,各檢測一次,假設(shè)每位患者的檢測結(jié)果相互獨立,以表示檢測結(jié)果為陽性的患者人數(shù),利用(1)中所得概率,求的分布列和數(shù)學(xué)期望;

          3)假設(shè)該地區(qū)有萬人,患病率為.從該地區(qū)隨機選取一人,用該試劑盒對其檢測一次.若檢測結(jié)果為陽性,能否判斷此人患該疾病的概率超過?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),在矩形中,在邊上,.沿折起,使平面和平面都與平面垂直,連接,如圖(2.

          1)證明:

          2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻.為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

          0項

          1項

          2項

          3項

          4項

          5項

          5項以上

          理科生(人)

          1

          10

          17

          14

          14

          10

          4

          文科生(人)

          0

          8

          10

          6

          3

          2

          1

          (1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關(guān)?

          比較了解

          不太了解

          合計

          理科生

          文科生

          合計

          (2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

          (i)求抽取的文科生和理科生的人數(shù);

          (ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          ,.

          查看答案和解析>>

          同步練習(xí)冊答案