日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過點M(2,4)作互相垂直的兩條直線,直線l1與x軸正半軸交于點A,直線l2與y軸正半軸交于點B.
          (1)當△AOB的面積達到最大值時,求四邊形AOBM外接圓方程;
          (2)若直線AB將四邊形OAMB分割成面積相等的兩部分,求△AOB的面積.
          分析:(1)分兩種情況:當直線l1的斜率不存在時,直線l1與x軸垂直,直線l2與y軸垂直,三角形AOB是直角邊為2和4的直角三角形,所以面積等于4;當直線l1的斜率存在時,設(shè)出直線l1的斜率為k,則直線l2的斜率為-
          1
          k
          ,兩直線都過M(2,4),所以分別寫出兩直線的方程,分別令x=0和y=0即可求出A和B的坐標,然后根據(jù)三角形的面積公式表示出三角形的面積S(k)與k的二次函數(shù)關(guān)系式,根據(jù)k等于-
          b
          2a
          的時候,S(k)有最大值,最大值為
          4ac-b2
          4a
          ,并比較其最大值與4的大小即可判斷出斜率存在時面積最大,利用此時的k值即可求出A和B的坐標,根據(jù)90°的圓周角所對的弦是直徑,得到AB為四邊形AOBM外接圓的直徑,所以利用中點坐標公式求出線段AB的中點坐標即可得到圓心坐標,利用兩點間的距離公式求出|AB|的長度,除以2即可得到圓的半徑,根據(jù)圓心和半徑寫出四邊形AOBM外接圓的標準方程即可;
          (2)分兩種情況:當直線l1的斜率不存在時,四邊形OAMB面積等于8,所以△AOB的面積的面積等于4;當直線l1的斜率存在時,連接OM,把四邊形分成兩個三角形OMB和三角形AOM,然后利用三角形的面積公式,由(1)中A和B的坐標表示出四邊形的面積,然后在利用A與B的坐標表示出三角形AOB的面積,并令四邊形的面積等于三角形面積的2倍列出關(guān)于k的方程,求出方程的解即可得到k的值,進而得到A與B的坐標,即可求出此時三角形AOB的面積.
          解答:解:(1)當直線l1斜率不存在時,△AOB的面積等于4;
          當直線l1斜率存在時,可設(shè)其方程為y-4=k(x-2).令y=0,得A(2-
          4
          k
          ,0)

          因與l2互相垂直,故l2方程為y-4=-
          1
          k
          (x-2)
          .令x=0,得B(0,4+
          2
          k
          )

          此時△AOB的面積S(k)=
          1
          2
          (2-
          4
          k
          )(4+
          2
          k
          )=-
          4
          k2
          -
          6
          k
          +4

          于是當k=-
          4
          3
          時,S(k)取最大值
          25
          4

          由于
          25
          4
          >4
          ,所以當△AOB的面積達到最大值時,A(5,0),B(0,
          5
          2
          )

          AB的中點坐標即圓心坐標為(
          0+5
          2
          0+
          5
          2
          2
          )即(
          5
          2
          ,
          5
          4
          ),r=
          1
          2
          |AB|=
          1
          2
          52+(
          5
          2
          )
          2
          =
          5
          5
          4
          ,
          所以四邊形AOBM外接圓方程為:(x-
          5
          2
          )2+(y-
          5
          4
          )2=
          125
          16

          (2)當直線斜率l1不存在時,四邊形OAMB面積等于8,
          △AOB的面積等于4,符合題意;
          當直線斜率l1存在時,由(1)知A(2-
          4
          k
          ,0)
          ,B(0,4+
          2
          k
          )

          四邊形OAMB的面積為
          1
          2
          (2-
          4
          k
          )×4+
          1
          2
          (4+
          2
          k
          )×2=8-
          6
          k

          于是有2(-
          4
          k2
          -
          6
          k
          +4)=8-
          6
          k
          .解得k=-
          4
          3

          此時A(5,0),B(0,
          5
          2
          )
          .△AOB的面積等于
          25
          4

          綜上可知,△AOB的面積為4或
          25
          4
          點評:此題考查學生掌握兩直線垂直時斜率的關(guān)系,考查了分類討論的數(shù)學思想,同時要求學生掌握圓的一些基本性質(zhì),靈活運用兩點間的距離公式及中點坐標公式化簡求值,是一道綜合題.學生做題時不要忽視斜率不存在時的情況.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          過點M(2,4)作兩條互相垂直的直線,分別交x軸y軸的正半軸于A、B,若四邊形OAMB的面積被直線AB平分,求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          過點M(-2,4)作圓C:(x-2)2+(y-1)2=25的切線l,且直線l1:ax+3y+2a=0與l平行,則l1與l間的距離是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•許昌三模)已知圓C的方程為x2+y2=4,過點M(2,4)作圓C的兩條切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓T:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右頂點和上頂點.
          (1)求橢圓T的方程;
          (2)已知直線l與橢圓T相交于P,Q兩不同點,直線l方程為y=kx+
          3
          (k>0)
          ,O為坐標原點,求△OPQ面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          有下列四個命題:
          (1)函數(shù)f(x)=
          1
          lgx
          在(0,1)∪(1,+∞)上是減函數(shù);
          (2)不等式:arcsinx≤arccosx的解集為[
          2
          2
          ,1]
          ;
          (3)已知數(shù)列{an}的前n項和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
          (4)過點M(2,4)作拋物線y2=8x的切線,則切線方程可以表示為:y=x+2.
          則正確命題的序號為
          (3)(4)
          (3)(4)

          查看答案和解析>>

          同步練習冊答案