日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).
          (1)求雙曲線C的方程;
          (2)若直線l:y=kx+與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且·>2(其中O為原點(diǎn)),求k的取值范圍.

          (1)-y2=1
          (2)(-1,-)∪(,1)

          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點(diǎn)P,Q且.
          (I)求點(diǎn)T的橫坐標(biāo);
          (II)若以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
          ①求橢圓C的標(biāo)準(zhǔn)方程;
          ②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),設(shè),若的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左,右兩個(gè)頂點(diǎn)分別為.曲線是以、兩點(diǎn)為頂點(diǎn),離心率為的雙曲線.設(shè)點(diǎn)在第一象限且在曲線上,直線與橢圓相交于另一點(diǎn)
          (1)求曲線的方程;
          (2)設(shè)兩點(diǎn)的橫坐標(biāo)分別為,,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知△ABC的周長(zhǎng)為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
          (1)求動(dòng)點(diǎn)C的軌跡E的方程;
          (2)過原點(diǎn)作兩條關(guān)于y軸對(duì)稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對(duì)應(yīng)的四邊形的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長(zhǎng)半軸長(zhǎng)等于焦距.
          (1)求橢圓的方程;
          (2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
          (1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
          (2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
          (3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知線段,的中點(diǎn)為,動(dòng)點(diǎn)滿足為正常數(shù)).
          (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線方程;
          (2)若,動(dòng)點(diǎn)滿足,且,試求面積的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知的三個(gè)頂點(diǎn)在拋物線上,為拋物線的焦點(diǎn),點(diǎn)的中點(diǎn),
          (1)若,求點(diǎn)的坐標(biāo);
          (2)求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
          (1)求橢圓的離心率;
          (2)F1是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:;
          (3)過且與AB垂直的直線交橢圓于P、Q,若的面積是20 ,求此時(shí)橢圓的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案