日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1、F2是橢圓+=1的兩焦點(diǎn),經(jīng)點(diǎn)F2的直線交橢圓于點(diǎn)A、B,若|AB|=5,則|AF1|+|BF1|等于(  )
          A.11           B.10           C.9        D.16
          A

          試題分析:依據(jù)橢圓定義可知

          點(diǎn)評:橢圓定義在解題中應(yīng)用非常廣泛:橢圓上的點(diǎn)到焦點(diǎn)的距離之和為
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          橢圓的焦距是2,則=(    )
          A.5B.3C.5或3D.2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知, 是橢圓的兩個焦點(diǎn),點(diǎn)在此橢圓上且,則的面積等于(    )
          A.B.C.2D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在橢圓(a>)中,記左焦點(diǎn)為F,右頂點(diǎn)為A,短軸上方的端點(diǎn)為B,若角,則橢圓的離心率為( )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分16分)
          橢圓:的左、右頂點(diǎn)分別,橢圓過點(diǎn)且離心率.

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
          ①求點(diǎn)所在曲線的方程;
          ②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          若橢圓的離心率為,焦點(diǎn)在軸上,且長軸長為10,曲線上的點(diǎn)與橢圓的兩個焦點(diǎn)的距離之差的絕對值等于4.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)求曲線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在直角坐標(biāo)平面內(nèi),已知點(diǎn),動點(diǎn)滿足條件:,則點(diǎn)的軌跡方程是(    ).
          A.B.C.()D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),A和B是以O(shè)(O為坐標(biāo)原點(diǎn))為圓心,以|OF1|為半徑的圓與該橢圓的兩個交點(diǎn),且△F2AB是等邊三角形,則橢圓的離心率為(  )
          A.B.C.-1 D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓的一個焦點(diǎn)為F,若橢圓上存在點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點(diǎn),則該橢圓的離心率為(  )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案