日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在中,,斜邊可通過以直線AO為軸旋轉(zhuǎn)得到,且二面角是直二面角,動(dòng)點(diǎn)D在斜邊AB上,(1)求證:平面平面;(2)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的正切值;(3)求CD與平面所成最大值角的正切值.

           

           

           

           

           

          【答案】

          (2)(3)

           

          【解析】證明:(1)由題意得是二面角的平面角,因二面角是直二面角,因此,又平面,平面,因此平面平面;

          (2)作DE,垂直為E,連接CE,如圖所示,因DE//AO,是異面直線AO與CD所成的角,在直角三角形COE中,CO=BO=2,,又,所以在直角三角形中有,所以異面直線AO與CD所成角的正切值為

          (3)由(1)知平面,因此是CD與平面所成的角,且,當(dāng)OD最小時(shí),最大,這時(shí)對(duì)于,垂足為D,OD=,因此CD與平面所成最大值角的正切值為

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年北京卷理)(本小題共14分)

          如圖,在中,,斜邊可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動(dòng)點(diǎn)的斜邊上.

          (I)求證:平面平面;

          (II)當(dāng)的中點(diǎn)時(shí),求異面直線所成角的大。

          (III)求與平面所成角的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在中,,斜邊,可通過以直線AO為軸旋轉(zhuǎn)得到,且二面角是直二面角,動(dòng)點(diǎn)D在斜邊AB上,(1)求證:平面平面;(2)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的正切值;(3)求CD與平面所成最大值角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在中,,斜邊,的中點(diǎn).現(xiàn)將以直角邊為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)為圓錐體底面圓周上的一點(diǎn),且.

          (1)求異面直線所成角的大小;

          (2)若某動(dòng)點(diǎn)在圓錐體側(cè)面上運(yùn)動(dòng),試求該動(dòng)點(diǎn)從點(diǎn)出發(fā)運(yùn)動(dòng)到點(diǎn)所經(jīng)過的最短距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)

          如圖,在中,,斜邊可以通過以直線為軸旋轉(zhuǎn)得到且二面角是直二面角,動(dòng)點(diǎn)在斜邊

          (Ⅰ)當(dāng)的中點(diǎn)時(shí),求直線所成角的大。唬á颍┊(dāng)與面所成角最大時(shí),求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(北京) 題型:解答題

          (本小題共14分)

          如圖,在中,,斜邊可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動(dòng)點(diǎn)的斜邊上.

          (I)求證:平面平面

          (II)當(dāng)的中點(diǎn)時(shí),求異面直線所成角的大小;

          (III)求與平面所成角的最大值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案