【題目】如圖,三棱錐中,平面
平面
,
,
,點(diǎn)
,
分別是棱
,
的中點(diǎn),點(diǎn)
是
的重心.
(1)證明:平面
;
(2)若與平面
所成的角為
,求二面角
的余弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)根據(jù)三角形重心性質(zhì)可得,根據(jù)三角形中位線性質(zhì)得
,再根據(jù)線面平行判定定理得
平面
,
平面
,最后根據(jù)面面平行判定定理以及性質(zhì)得結(jié)果;
(2)先根據(jù)面面垂直性質(zhì)定理得平面
,確定
與平面
所成的角,再根據(jù)條件建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo),利用向量數(shù)量積得各面法向量,最后根據(jù)向量夾角公式得法向量夾角,即得二面角所成角.
(1)連接,連接
并延長(zhǎng)交
于點(diǎn)
,則點(diǎn)
為
的中點(diǎn),
從而點(diǎn),
,
分別是棱
,
,
的中點(diǎn),
∴,
.
又,
平面
,
,
平面
,
∴平面
,
平面
.
又,
平面
,
,
∴平面平面
,
又平面
,
∴平面
.
(2)連接,∵
,
是
的中點(diǎn),∴
,
∵平面平面
,平面
平面
,
平面
,
平面
.
連接并延長(zhǎng)交
于點(diǎn)
,則
為
的中點(diǎn),
連接,則
,∴
平面
.
∴為
與平面
所成的角,即
.
在中,設(shè)
,則
,
,∴
,
.
∴,
,
,
∴,即
,
如圖建立空間直角坐標(biāo)系,
則,
,
.
∴,
,
設(shè)平面的一個(gè)法向量為
,
則,可取
,
又平面的一個(gè)法向量為
,
則,
所以二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.且曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程以及曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為
,直線
與曲線
交于
兩點(diǎn),求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)老師任教的班級(jí)有50名學(xué)生,某次單元測(cè)驗(yàn)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間為,
,
,
,
,
(1)求圖中的值;
(2)從成績(jī)不低于80分的同學(xué)中隨機(jī)選取3人,該3人中成績(jī)?cè)?/span>90分以上(含90分)的人數(shù)記為,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法自古以來(lái)就使用的紀(jì)年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸為十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥為十二地支.“干支紀(jì)年法”是以一個(gè)天干和一個(gè)地支按上述順序相配排列起來(lái),天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此類(lèi)推,則2080年是____________年.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是正方形,側(cè)面
底面
,
,
分別為
,
中點(diǎn),
.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn)
,使
平面
?若存在,指出點(diǎn)
的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,點(diǎn)
在橢圓
上,焦點(diǎn)為
,圓O的直徑為
.
(1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線l與橢圓C交于兩點(diǎn).記
的面積為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐中,平面
平面
,
,
,點(diǎn)
,
分別是棱
,
的中點(diǎn),點(diǎn)
是
的重心.
(1)證明:平面
;
(2)若與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)
的極值;
(Ⅱ)若,且方程
在區(qū)間
內(nèi)有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com