日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=10,AD=5,AA1=4.分別過(guò)BC、A1D1的兩個(gè)平行截面將長(zhǎng)方體分成    三部分,其體積分別記為V1=,V2=,V3=.若V1:V2:V3=1:3:1,則截面A1EFD1的面積為( )

          A.
          B.
          C.20
          D.
          【答案】分析:先由三部分幾何體均為棱柱,且有等高的特點(diǎn),將體積之比轉(zhuǎn)化為底面積之比,再由底面圖形具有等高的特點(diǎn)將面積之比轉(zhuǎn)化為邊長(zhǎng)之比,最后求出線段A1E的長(zhǎng)即可計(jì)算矩形面積
          解答:解:∵將長(zhǎng)方體分成的三部分均為棱柱,且高均為5,故V1:V2:V3=S△AA1E:SA1E1BE:S△AA1E=1:3:1
          ∵△AA1E與四邊形A1E1BE有等高4,故AE:EB=2:3,∵AB=10,∴AE=4,∴A1E===4
          ∴截面A1EFD1的面積為EF×A1E=5×4=20
          故選C
          點(diǎn)評(píng):本題考察了棱柱的體積公式的用法,將空間問(wèn)題不斷轉(zhuǎn)化為平面問(wèn)題的思想方法,轉(zhuǎn)化化歸的思想方法
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖在長(zhǎng)方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個(gè)數(shù)為:
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,定義八個(gè)頂點(diǎn)都在某圓柱的底面圓周上的長(zhǎng)方體叫做圓柱的內(nèi)接長(zhǎng)方體,圓柱也叫長(zhǎng)方體的外接圓柱.設(shè)長(zhǎng)方體ABCD-A1B1C1D1的長(zhǎng)、寬、高分別為a,b,c(其中a>b>c),那么該長(zhǎng)方體的外接圓柱側(cè)面積的最大值等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若一個(gè)n面體中有m個(gè)面是直角三角形,則稱(chēng)這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

           

          A.         B.               C.                 D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若一個(gè)n面體中有m個(gè)面是直角三角形,則稱(chēng)這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

           

          A.            B.              C.              D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

          (文科做)(本題滿分14分)如圖,在長(zhǎng)方體

          ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).

          (1)證明:D1EA1D;

          (2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

          (3)AE等于何值時(shí),二面角D1ECD的大小為.                      

           

           

           

          (理科做)(本題滿分14分)

               如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

          CA =,AA1 =,M為側(cè)棱CC1上一點(diǎn),AMBA1

             (Ⅰ)求證:AM⊥平面A1BC;

             (Ⅱ)求二面角BAMC的大小;

             (Ⅲ)求點(diǎn)C到平面ABM的距離.

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案