日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+ax+b.
          (1)若對任意的實數(shù)x,都有f(x)≥2x+a,證明:b≥1;
          (2)當(dāng)x∈[-1,1]時,f(x)的最大值為b-a+1,求a的取值范圍;
          (3)若a=-2,關(guān)于x的方程|f(x)|=1有4個不相等的實數(shù)根,求b的取值范圍.
          分析:(1)由題意可得x2+(a-2)x+b-a≥0恒成立,可得△=(a-2)2-4(b-a)≤0,由此求得b的范圍.
          (2)由于當(dāng)x∈[-1,1]時,f(x)的最大值為b-a+1=f(-1),可得f(x)圖象的對稱軸x=-
          a
          2
          要滿足-
          a
          2
          -1+1
          2
          ,由此求得a的范圍.
          (3)由題意可得方程x2-2x+b=1和x2-2x+b=-1各有兩個不相等的實數(shù)根,故兩個方程的判別式都要大于0,從而求得b的范圍.
          解答:解:(1)∵x2+ax+b≥2x+a恒成立,即x2+(a-2)x+b-a≥0恒成立.
          ∴△=(a-2)2-4(b-a)≤0,
          ∴a2+4-4b≤0,∴4-4b≤0,∴b≥1.------(5分)
          (2)∵當(dāng)x∈[-1,1]時,f(x)的最大值為b-a+1,即f(-1),
          ∴f(x)圖象的對稱軸x=-
          a
          2
          要滿足-
          a
          2
          -1+1
          2
          ,
          ∴a≤0.--------(10分)
          (3)∵關(guān)于x的方程|x2-2x+b|=1有4個不相等的實數(shù)根,
          ∴方程x2-2x+b=1和x2-2x+b=-1各有兩個不相等的實數(shù)根,
          ∴兩個方程的判別式都要大于0,
          4-4(b-1)>0
          4-4(b+1)>0
          ,
          解得b<0.---(15分)
          點評:本題主要考查方程根的存在性及個數(shù)判斷,二次函數(shù)的性質(zhì)應(yīng)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案