日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在Rt△ABCD中,∠ACB=90°,點O為三角形外的一點,以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點為E,圓O與邊BC相交于D點,直徑EF與邊BC交于G點,連接AC.
          (1)求證:A、E、G、C四點共圓;
          (2)求證:AG∥ED.
          【答案】分析:(1)要證明四點共圓,可根據(jù)圓內(nèi)接四邊形判定定理:四邊形的外角等于與它相鄰內(nèi)角的對角,而由AB是⊙O的切線,E為切點,易得∠AEG=90°,而∠ACG=90°,故不難得到結(jié)論.
          (2)由(1)的結(jié)論,我們結(jié)合圓周角定理,易得∠AEC=∠AGC,再結(jié)合弦切解定理,我們可得∠AEC=∠EDC,根據(jù)等量代換思想,我們可以得到同位角相等的結(jié)論,不難得到線線平行.
          解答:證明:(1)∵圓O與邊AB相切于點E,
          ∴∠AEG=90°
          又∵∠ACB=90°
          ∴∠AEG=∠ACB
          ∴A、E、G、C四點共圓.
          (2)∵A、E、G、C四點共圓,
          ∴∠AEC=∠AGC
          又∵AB是圓O的切線,
          ∴∠AEC=∠EDC
          ∴∠EDC=∠AGC
          ∴AG∥ED.
          點評:本題是考查同學(xué)們推理能力、邏輯思維能力的好資料,題目以證明題為主,特別是一些定理的證明和用多個定理證明一個問題的題目,我們注意熟練掌握:1.射影定理的內(nèi)容及其證明; 2.圓周角與弦切角定理的內(nèi)容及其證明;3.圓冪定理的內(nèi)容及其證明;4.圓內(nèi)接四邊形的性質(zhì)與判定.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          22、如圖所示,在Rt△ABCD中,∠ACB=90°,點O為三角形外的一點,以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點為E,圓O與邊BC相交于D點,直徑EF與邊BC交于G點,連接AC.
          (1)求證:A、E、G、C四點共圓;
          (2)求證:AG∥ED.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
          (1)求△ABC的面積f(θ)與正方形面積g(θ);
          (2)當(dāng)θ變化時,求
          f(θ)g(θ)
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在Rt△ABC中,∠CAB=90°,AB=2,AC=
          2
          2
          .一曲線E過點C,動點P在曲線E上運動,且保持|PA|+|PB|的值不變,直線l經(jīng)過A與曲線E交于M,N兩點.
          (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線E的方程;
          (2)設(shè)直線l的斜率為k,若∠MBN為鈍角,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
          (1)求△ABC的面積f(θ)與正方形面積g(θ);
          (2)當(dāng)θ變化時,求
          f(θ)
          g(θ)
          的最小值.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊答案