【題目】已知,
.
(1)若恒成立.求
的最大值
;
(2)若,。1)中的
,當(dāng)
時,證明:
.
【答案】(1)(2)證明見解析;
【解析】
(1)根據(jù)函數(shù)奇偶性可知為偶函數(shù),根據(jù)
時,
恒成立可將問題轉(zhuǎn)化為
時,
,
恒成立,求
;利用導(dǎo)數(shù),分別在
和
兩種情況下得到函數(shù)單調(diào)性,進而確定
的范圍,從而得到最大值;
(2)將所證不等式轉(zhuǎn)化為證明當(dāng),
,根據(jù)余弦函數(shù)和二次函數(shù)單調(diào)性可分別求得不等號左右兩側(cè)函數(shù)的最大值和最小值,由此可證得不等式成立,從而得到結(jié)論.
(1),
為偶函數(shù),
當(dāng)時,
恒成立,
故題意可為:,
,若
恒成立,求
的最大值
.
,
,
①若,則
恒成立,
在
單調(diào)遞增,
又,有
,
,故
在
單調(diào)遞增,
又,有
恒成立,此時
的最大值
.
②若,則存在最小的正數(shù)
,使
成立,此時
,
當(dāng)時,
,
在
單調(diào)遞減,
又,有
,
,故
在
單調(diào)遞減,
又,有
,
,故
,
不恒成立,
即無最大值.
綜合①②可知,滿足題意的最大值
.
(2)由(1)知,,證明:
,
即證:,
,
,
,
由,
恒成立,有
,
即證:,
,
,
,(*)
當(dāng)時,
的最大值為
,
當(dāng)時,
的最小值為
,
故(*)式恒成立,即證得恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式m-|x-2|≥1,其解集為[0,4].
(1)求m的值;
(2)若a,b均為正實數(shù),且滿足a+b=m,求a2+b2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定“口徑誤差”的計算方式為:管件內(nèi)外兩個口徑實際長分別為,標準長分別為
則“口徑誤差”為
只要“口徑誤差”不超過
就認為合格,已知這臺車床分晝夜兩個獨立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗,則每件產(chǎn)品的檢驗費用為2.5元;若有不合格品進入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓以拋物線
的焦點為頂點,且離心率為
.
(1)求橢圓的方程;
(2)若直線與橢圓
相交于
、
兩點,與直線
相交于
點,
是橢圓
上一點且滿足
(其中
為坐標原點),試問在
軸上是否存在一點
,使得
為定值?若存在,求出點
的坐標及
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐P-ABC中,PA平面ABC,ABAC,且PA=l,AB=AC=2,點D滿足,
.
(1)當(dāng),求二面角P-BD-C的余弦值;
(2)若直線PC與平面PBD所成角的正弦值為,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高生產(chǎn)線的運行效率,工廠對生產(chǎn)線的設(shè)備進行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:
(1)①設(shè)所采集的個連續(xù)正常運行時間的中位數(shù)
,并將連續(xù)正常運行時間超過
和不超過
的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
②根據(jù)①中的列聯(lián)表,能否有的把握認為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運行時間有差異?
附:.
(2)工廠的生產(chǎn)線的運行需要進行維護,工廠對生產(chǎn)線的生產(chǎn)維護費用包括正常維護費、保障維護費兩種.對生產(chǎn)線設(shè)定維護周期為天(即從開工運行到第
天
進行維護.生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護周期,每個維護周期相互獨立.在一個維護周期內(nèi),若生產(chǎn)線能連續(xù)運行,則不會產(chǎn)生保障維護費;若生產(chǎn)線不能連續(xù)運行,則產(chǎn)生保障維護費.經(jīng)測算,正常維護費為
萬元/次;保障維護費第一次為
萬元/周期,此后每增加一次則保障維護費增加
萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以
天計)內(nèi)的維護方案:
,
、
、
、
.以生產(chǎn)線在技術(shù)改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護費的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)當(dāng)時,判斷函數(shù)
的零點個數(shù);
(Ⅱ)若對任意,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中,石子是我們經(jīng)常見到的材料,比如在各種建筑工地或者建材市場上常常能看到堆積如山的石子,它的主要成分是碳酸鈣.某雕刻師計劃在底面邊長為2m、高為4m的正四棱柱形的石料中,雕出一個四棱錐
和球M的組合體,其中O為正四棱柱的中心,當(dāng)球的半徑r取最大值時,該雕刻師需去除的石料約重___________kg.(最后結(jié)果保留整數(shù),其中
,石料的密度
,質(zhì)量
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com