【題目】已知平面上動點P到定點的距離比P到直線
的距離大1.記動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點的直線
交曲線C于A、B兩點,點A關(guān)于x軸的對稱點是D,證明:直線
恒過點F.
【答案】(1)(2)證明見解析
【解析】
(1)先分析出點P在直線的右側(cè),然后利用拋物線的定義寫出方程即可
(2)設(shè)出直線的方程和A、B兩點坐標,聯(lián)立方程求出
的范圍和A、B兩點縱坐標之和和積,寫出直線
的方程,然后利用前面得到的關(guān)系化簡即可.
(1)不難發(fā)現(xiàn),點P在直線的右側(cè),
∴P到的距離等于P到直線
的距離.
∴P的軌跡為以為焦點,以
為準線的拋物線,
∴曲線C的方程為.
(2)設(shè)直線的方程為
,
聯(lián)立,得
,
,解得
或
.
∴,
.
又點A關(guān)于x軸的對稱點為D,
則直線的方程為
即
令,得
.
∴直線恒過定點
,而點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)濟訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(元)關(guān)于每次訂貨
(單位)的函數(shù)關(guān)系
,其中
為年需求量,
為每單位物資的年存儲費,
為每次訂貨費. 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費為120元/年,每次訂貨費為2500元.
(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費;
(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費最少?最少費用為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“
”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
在
上的最大值;
(2)令,若
在區(qū)間
上為單調(diào)遞增函數(shù),求
的取值范圍;
(3)當 時,函數(shù)
的圖象與
軸交于兩點
,且
,又
是
的導(dǎo)函數(shù).若正常數(shù)
滿足條件
.證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點
,長軸長是短軸長的2倍.
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點
且與橢圓
相交于
兩點(異于點
),記直線
的斜率為
,直線
的斜率為
,證明:
為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面與平面
平行的充分條件可以是( )
A.內(nèi)有無窮多條直線都與
平行
B.直線,
,且直線a不在
內(nèi),也不在
內(nèi)
C.直線,直線
,且
,
D.內(nèi)的任何一條直線都與
平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線
的極坐標方程為
,曲線
的極坐標方程為
,
(l)設(shè)為參數(shù),若
,求直線
的參數(shù)方程;
(2)已知直線與曲線
交于
,
設(shè)
,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,定義橢圓
的“相關(guān)圓”方程為
.若拋物線
的焦點與橢圓
的一個焦點重合,且橢圓
短軸的一個端點和其兩個焦點構(gòu)成直角三角形.
(1)求橢圓的方程和“相關(guān)圓”
的方程;
(2)過“相關(guān)圓”上任意一點
的直線
與橢圓
交于
兩點.
為坐標原點,若
,證明原點
到直線
的距離是定值,并求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com