日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓C:數(shù)學公式+數(shù)學公式=1(a>b>0)的兩個焦點為F1,F(xiàn)2,點P在橢圓C上,且PF1⊥F1F2,|PF2|=數(shù)學公式
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若直線l過點M(-2,1),交橢圓C于A,B兩點,且M恰是A,B中點,求直線l的方程.

          解:(Ⅰ)因為點P在橢圓C上,所以2a=|PF1|+|PF2|=6,a=3.
          在Rt△PF1F2中,|F1F2|=,故橢圓的半焦距c=,從而b2=a2-c2=4,
          所以橢圓C的方程為=1.(6分)
          (Ⅱ)設A,B的坐標分別為(x1,y1)、(x2,y2).若直線l斜率不存在,顯然不合題意.
          從而可設過點(-2,1)的直線l的方程為 y=k(x+2)+1,
          代入橢圓C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.
          因為A,B關于點M對稱,所以,解得k=,
          所以直線l的方程為,即8x-9y+25=0.
          經(jīng)檢驗,△>0,所以所求直線方程符合題意. (14分)
          分析:(Ⅰ)根據(jù)橢圓的定義,可得a的值,在Rt△PF1F2中,|F1F2|=,可得橢圓的半焦距c=,從而可求橢圓C的方程為=1;
          (Ⅱ)設A,B的坐標分別為(x1,y1)、(x2,y2),設過點(-2,1)的直線l的方程為 y=k(x+2)+1,代入橢圓C的方程,利用A,B關于點M對稱,結合韋達定理,即可求得結論.
          點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理的運用,確定橢圓的方程,聯(lián)立方程是關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          F1F2分別為橢圓C =1(ab>0)的左、右兩個焦點.

          (1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

          (2)設點P是(1)中所得橢圓上的動點,當P在何位置時,最大,說明理由,并求出最大值。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          F1F2分別為橢圓C =1(ab>0)的左、右兩個焦點.

          (1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

          (2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年高考數(shù)學總復習備考綜合模擬試卷(3)(解析版) 題型:解答題

          已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
          (1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點,求e的大。
          (2)在(1)的條件下,設橢圓的上頂點為A,左焦點為F,過點A與AF垂直的直線交x軸的正半軸于B點,過A、B、F三點的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年廣西桂林市、崇左市、防城港市高考第一次聯(lián)合模擬理科數(shù)學試卷(解析版) 題型:解答題

           如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標原點,OB垂直AF于B,且OF=3OB.

          (Ⅰ)求橢圓C的離心率;

          (Ⅱ)求t∈(0,b),使得命題“設圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年遼寧省沈陽四校聯(lián)合體高二上學期期中考試理科數(shù)學卷 題型:選擇題

          設F1、F2分別為橢圓C: =1(a>b>0)的左、右焦點.

          (Ⅰ)若橢圓上的點A(1,)到點F1、F2的距離之和等于4,求橢圓C的方程;

          (Ⅱ)設點是(Ⅰ)中所得橢圓C上的動點,求線段的中點的軌跡方程.

           

          查看答案和解析>>

          同步練習冊答案