【題目】下列函數(shù)既是奇函數(shù),又在上單調(diào)遞增的是
A. B.
C. D.
【答案】C
【解析】
根據(jù)題意,依次分析選項中函數(shù)的奇偶性以及上的單調(diào)性,綜合即可得答案.
根據(jù)題意,依次分析選項:
對于A,f(x)=|sinx|,為偶函數(shù),不符合題意;
對于B,f(x)=ln,其定義域為(﹣e,e),有f(﹣x)=ln
ln
f(x),為奇函數(shù),
設(shè)t1
,在(﹣e,e)上為減函數(shù),而y=lnt為增函數(shù),
則f(x)=ln在(﹣e,e)上為減函數(shù),不符合題意;
對于C,f(x)(ex﹣e﹣x),有f(﹣x)
(e﹣x﹣ex)
(ex﹣e﹣x)=﹣f(x),為奇函數(shù),且f′(x)
(ex+e﹣x)>0,在R上為增函數(shù),符合題意;
對于D,f(x)=ln(x),其定義域為R,
f(﹣x)=ln(x)=﹣ln(
x)=﹣f(x),為奇函數(shù),
設(shè)tx
,y=lnt,t在R上為減函數(shù),而y=lnt為增函數(shù),
則f(x)=ln(x)在R上為減函數(shù),不符合題意;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為
,離心率
,且短軸長為4.
求橢圓
的方程;
已知
,
,若直線l與圓
相切,且交橢圓E于C、D兩點(diǎn),記
的面積為
,記
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計),設(shè)∠BAD=
,
(
,
).
(1)當(dāng)cos=
時,求小路AC的長度;
(2)當(dāng)草坪ABCD的面積最大時,求此時小路BD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的華為手機(jī)專賣店對該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻率分布直方圖如圖:
(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計值(均精確到個位);
(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動,現(xiàn)從這20人中,隨機(jī)選取2人各贈送一部華為手機(jī),求這2名市民年齡都在內(nèi)的人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物線的焦點(diǎn)為
,已知點(diǎn)
為拋物線上的兩個動點(diǎn),且滿足
,過弦
的中點(diǎn)
作該拋物線準(zhǔn)線的垂線
,垂足為
,則
的最小值為
A. B. 1 C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ
當(dāng)
時,
取得極值,求
的值并判斷
是極大值點(diǎn)還是極小值點(diǎn);
Ⅱ
當(dāng)函數(shù)
有兩個極值點(diǎn)
,
,且
時,總有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸的橢圓C:離心率e=
,A是左頂點(diǎn),E(2,0)
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若斜率不為0的直線l過點(diǎn)E,且與橢圓C相交于點(diǎn)P,Q兩點(diǎn),求三角形APQ面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)a=1時,寫出的單調(diào)遞增區(qū)間(不需寫出推證過程);
(Ⅱ)當(dāng)x>0時,若直線y=4與函數(shù)的圖像交于A,B兩點(diǎn),記
,求
的最大值;
(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com