【題目】已知函數(shù)
(1)若,且
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍
(2)是否存在實(shí)數(shù),使得函數(shù)
在
上的最小值為
?若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說明理由.
【答案】(1);(2)實(shí)數(shù)
是存在的,且
.
【解析】試題分析:(1)首先對(duì)函數(shù)求導(dǎo),由已知在
時(shí)恒成立,得
,又由
,即可求解正實(shí)數(shù)
的取值范圍;(2)利用反證法,假設(shè)存在這樣的實(shí)數(shù)
,則
在
時(shí)恒成立,可得
,利用導(dǎo)數(shù)判斷函數(shù)
,即可求解參數(shù)的取值.
試題解析:(1),由已知
在
時(shí)恒成立,即
恒成立,分離參數(shù)得
,又
,所以正實(shí)數(shù)
的取值范圍為
.
(2)假設(shè)存在這樣的實(shí)數(shù),則
在
時(shí)恒成立,且可以取到等號(hào),故
,即
,故
,解得
,從而這樣的實(shí)數(shù)
必須為正實(shí)數(shù).
當(dāng)時(shí),由(1)知
在
上遞增,所以
,此時(shí)不合題意.故這樣的
必須滿足
,此時(shí),令
,得
的增區(qū)間為
;令
,得
的減區(qū)間為
.故
,
整理得,即
,設(shè)
,則上式即為
,構(gòu)造
,則等價(jià)于
,由于
為增函數(shù),
為減函數(shù),故
為增函數(shù),觀察知
,故
等價(jià)于
,與之對(duì)應(yīng)的
,綜上符合條件的實(shí)數(shù)
是存在的,即
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為14分)已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為實(shí)數(shù)).
(1)當(dāng)時(shí),求函數(shù)
的圖象在點(diǎn)
處的切線方程;
(2)設(shè)函數(shù)(其中
為常數(shù)),若函數(shù)
在區(qū)間
上不存在極值,且存在
滿
足,求
的取值范圍;
(3)已知,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與圓
:
,圓
都相內(nèi)切,即圓心
的軌跡為曲線
;設(shè)
為曲線
上的一個(gè)不在
軸上的動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),過點(diǎn)
作
的平行線交曲線
于
,
兩個(gè)不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和
的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在
上的函數(shù),并且滿足下面三個(gè)條件:①對(duì)任意正數(shù)
,都有
;②當(dāng)
時(shí),
;③
.
(1)求,
的值;
(2)證明在
上是減函數(shù);
(3)如果不等式成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶市乘坐出租車的收費(fèi)辦法如下:
⑴不超過3千米的里程收費(fèi)10元; ⑵超過3千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi)); 當(dāng)車程超過3千米時(shí),另收燃油附加費(fèi)1元. |
相應(yīng)系統(tǒng)收費(fèi)的程序框圖如圖所示,其中(單位:千米)為行駛里程,
(單位:元)為所收費(fèi)用,用
表示不大于
的最大整數(shù),則圖中①處應(yīng)填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國際學(xué)術(shù)會(huì)議上,來自四個(gè)國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會(huì)說英語.
乙是法國人,還會(huì)說日語.
丙是英國人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)說明函數(shù)的圖像可由正弦曲線
經(jīng)過怎樣的變化得到;
(Ⅲ)若是第二象限的角,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi)某汽車品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量
的概率分布如下:
(1)求的值;
(2)假設(shè)一月與二月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車品牌在這兩個(gè)月內(nèi)被消費(fèi)者投訴次的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com