日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,橢圓C:的左頂點為A,M是橢圓C上異于點A的任意一點,點P與點A關(guān)于點M對稱.

          (1)若點P的坐標(biāo),求m的值;
          (2)若橢圓C上存在點M,使得,求m的取值范圍.

          (1)(2)

          解析試題分析:
          (1)根據(jù)m的取值范圍可以判斷橢圓C的焦點,得到點A的坐標(biāo),則根據(jù)點與點的中點坐標(biāo)公式可以用點P,A的坐標(biāo)計算得到點M的坐標(biāo),把M點的坐標(biāo)帶入橢圓即可求的m的值.
          (2)從題得A,P關(guān)于M對稱,則可以設(shè)出M點的坐標(biāo),得到P點的坐標(biāo)(中點的坐標(biāo)公式),因為OM與OP垂直,則根據(jù)向量的內(nèi)積為0可以得到關(guān)于M點坐標(biāo)的方程,則把該方程與M點滿足的橢圓方程聯(lián)立消縱坐標(biāo)即可求出m關(guān)于M點橫坐標(biāo)的方程,再利用基本不等式就可以求出m的取值范圍(注意取得等號條件的驗證與m值本身具有正數(shù)的范圍)
          試題解析:
          (1)依題意,是線段的中點,因為,
          所以點的坐標(biāo)為.   2分
          由點在橢圓上,所以,解得.     4分
          (2)設(shè),則,且.①   5分
          因為是線段的中點,所以.      7分
          因為,所以.②      9分
          由①,②消去,整理得.      11分
          所以,   13分
          當(dāng)且僅當(dāng)時,上式等號成立.
          所以的取值范圍是.     14分
          考點:橢圓幾何性質(zhì)橢圓標(biāo)準(zhǔn)方程不等式

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知雙曲線的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓相切,且與雙曲線左、右兩支的交點分別為

          (1)求k的取值范圍,并求的最小值;
          (2)記直線的斜率為,直線的斜率為,那么是定值嗎?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
          (1).求動點P的軌跡C方程;
          (2).設(shè)直線L:y=kx+m與曲線C交于不同兩點,M,N,當(dāng)OM⊥ON時,求O點到直線L的距離(O為坐標(biāo)原點)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知點為橢圓右焦點,圓與橢圓的一個公共點為,且直線與圓相切于點.

          (1)求的值及橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)動點滿足,其中M、N是橢圓上的點,為原點,直線OM與ON的斜率之積為,求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          橢圓的方程為,離心率為,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
          (1)求橢圓和拋物線的方程;
          (2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
          (3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
          (1)當(dāng)點在圓上運動時,求點的軌跡方程;
          (2)已知是曲線上的兩點,若曲線上存在點,滿足為坐標(biāo)原點),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:上,且橢圓的離心率e =

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

          (1)求橢圓的方程和其“準(zhǔn)圓”方程;
          (2)點是橢圓的“準(zhǔn)圓”上的動點,過點作橢圓的切線交“準(zhǔn)圓”于點.
          (ⅰ)當(dāng)點為“準(zhǔn)圓”與軸正半軸的交點時,求直線的方程并證明
          (ⅱ)求證:線段的長為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,過拋物線C:y2=4x上一點P(1,-2)作傾斜角互補的兩條直線,分別與拋物線交于點A(x,y1),B(x2,y2).

          (1)求y1+y2的值;
          (2)若y1≥0,y2≥0,求△PAB面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案