日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=2x+a•2-|x|(a∈R)滿足.若存在x∈[1,2]使得不等式2xf(2x)+mf(x)≥0成立,則實數(shù)m的取值范圍是( )
          A.[-5,+∞)
          B.[-,+∞)
          C.(-∞,-17]
          D.(-∞,-15]
          【答案】分析:先由解出a=1得 f(x)=2x+2-|x|,代入不等式2xf(2x)+mf(x)≥0,由于存在x∈[1,2]使不等式成立,故整理得-m≤,讓-m小于等于在∈[1,2]上的最大值即可解出實數(shù)m的取值范圍.
          解答:解:由題設函數(shù)f(x)=2x+a•2-|x|(a∈R)滿足
          +a×=2    ①
          >0
          ∴①式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184708285278087/SYS201310241847082852780011_DA/7.png">+a×=+a()=2
          故有1+a+(1-a)=2,a(1-)=1-,解得a=1
          所以   f(x)=2x+2-|x|
          當存在x∈[1,2]時,使不等式2xf(2x)+mf(x)≥0恒成立,即23x+2-x+m(2x+2-x)≥0成立,
          即24x+1+m(22x+1)≥0成立,即-m≤=22x+1-2+
          故m≥-
          故應選B.
          點評:本題考點是指數(shù)函數(shù)的綜合題,考查復雜指數(shù)式的恒等變形與復雜指數(shù)方程的變形,運算量較大,由于本題最后解決的是存在性的問題,要區(qū)分開其與恒成立問題的區(qū)別.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=2-
          1
          x
          ,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
          (1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
          (2)如果函數(shù)的一個零點在原點,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
          (1)若a1=0,求a2,a3,a4
          (2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
          (3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          選修4-5:不等式選講
          已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
          (Ⅰ)求實數(shù)m的值;
          (Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習冊答案