日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離和它到直線的距離的比值為常數(shù),記動(dòng)點(diǎn)的軌跡為曲線.

          (1)求曲線的方程;

          (2)若直線與曲線相交于不同的兩點(diǎn), ,直線與曲線相交于不同的兩點(diǎn) ,且,求以, , 為頂點(diǎn)的凸四邊形的面積的最大值.

          【答案】(1)曲線的方程為;(2)四邊形的面積的最大值為4.

          【解析】試題分析:1設(shè),根據(jù)題意,動(dòng)點(diǎn)的軌跡為集合,得,化簡(jiǎn)求解即可;

          (2)聯(lián)立消去,得,利用兩點(diǎn)距離公式及韋達(dá)定理求得,同理可得,由,設(shè)兩平行線間的距離為, 代入求解即可.

          試題解析:

          1設(shè),動(dòng)點(diǎn)到直線 的距離為,

          根據(jù)題意,動(dòng)點(diǎn)的軌跡為集合

          由此,得

          化簡(jiǎn),得

          ∴曲線的方程為.

          (2)設(shè)

          聯(lián)立消去,得.

          ,

          同理可得

          ,

          ,∴

          由題意,以為頂點(diǎn)的凸四邊形為平行四邊形

          設(shè)兩平行線間的距離為,則

          ,∴

          (當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)滿足),

          ∴四邊形的面積的最大值為4.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知兩個(gè)不相等的非零向量 , ,兩組向量 均由2個(gè) 和3個(gè) 排列而成,記S= ,Smin表示S所有可能取值中的最小值,則下列命題中
          1)S有5個(gè)不同的值;(2)若 則Smin與| |無關(guān);(3)若 則Smin與| |無關(guān);(4)若| |>4| |,則Smin>0;(5)若| |=2| |,Smin=8| |2 , 則 的夾角為 .正確的是(
          A.(1)(2)
          B.(2)(4)
          C.(3)(5)
          D.(1)(4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線:y=k (x+2)與圓O:相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),ABO的面積為S.

          (1)試將S表示成的函數(shù)S(k),并求出它的定義域;

          2)求S的最大值,并求取得最大值時(shí)k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)p:A={x|2x2﹣3ax+a2<0},q:B={x|x2+3x﹣10≤0}.
          (1)求A;
          (2)當(dāng)a<0時(shí),若¬p是¬q的必要不充分條件,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),

          (1)用定義證明:函數(shù)是R上的增函數(shù);

          (2)化簡(jiǎn),并求值:

          (3)若關(guān)于x的方程上有解,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn),過作拋物線的動(dòng)弦, ,并設(shè)它們的斜率分別為, .

          (Ⅰ)求拋物線的方程;

          (),求證:直線的斜率為定值,并求出其值;

          III)若,求證:直線恒過定點(diǎn),并求出其坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從甲乙兩個(gè)城市分別隨機(jī)抽取16臺(tái)自動(dòng)售貨機(jī),對(duì)其銷售額進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖所示),設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為中位數(shù)分別為則(

          A. xx,mm B. xx,mm

          C. xx,mm D. xx,mm

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,某幾何體的三視圖都是直角三角形,則該幾何體的體積等于__________

          【答案】10

          【解析】幾何體為三棱錐,(高為4底面為直角三角形),體積為

          點(diǎn)睛:空間幾何體體積問題的常見類型及解題策略

          (1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺(tái)體,則可直接利用公式進(jìn)行求解.

          (2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補(bǔ)形法等方法進(jìn)行求解.

          (3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.

          型】填空
          結(jié)束】
          15

          【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側(cè)棱長(zhǎng),則三棱錐的外接球的表面積等于__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),點(diǎn)FG分別是邊BC,CD上的點(diǎn),且,則下列說法正確的是________.(填寫所有正確說法的序號(hào))

          EFGH平行; ②EFGH異面;

          EFGH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上;

          EFGH的交點(diǎn)M一定在直線AC上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案