日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,三棱錐中,平面平面,,且.

          1)求證:;

          2)若,求二面角的余弦值.

          【答案】1)證明見解析(2

          【解析】

          1)取的中點,連接.根據(jù),得 ,再由,根據(jù)線面垂直的判定定理得平面,則,再利用三線合一證明.

          2)由三條直線兩兩垂直,建立空間直角坐標(biāo)系,分別求得平面和平面的一個法向量,再利用二面角的向量法公式求解.

          1)取的中點,連接.

          ,

          平面,

          平面

          OC平面,,

          的中點,.

          2平面平面,平面,

          平面平面,

          平面

          再由(1)可知三條直線兩兩垂直.

          所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系.

          由條件可得.

          ,

          ,,.

          設(shè)平面的一個法向量為,

          可得

          ,

          ,則.

          同理可得平面的一個法向量為,

          .

          由圖易知,二面角為銳角,

          二面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為F1,F2,過點F1的直線與C交于A,B兩點.ABF2的周長為,且橢圓的離心率為.

          1)求橢圓C的標(biāo)準(zhǔn)方程:

          2)設(shè)點P為橢圓C的下頂點,直線PAPBy2分別交于點M,N,當(dāng)|MN|最小時,求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】棉花的優(yōu)質(zhì)率是以其纖維長度來街量的,纖維越長的棉花晶質(zhì)越高.棉花的品質(zhì)分類標(biāo)準(zhǔn)為:纖維長度小于等于的為粗絨棉,纖維長度在的為細(xì)絨棉,纖維長度大于的為長絨棉,其中纖維長度在以上的棉花又名軍海1”.某采購商從新疆某一棉花基地抽測了根棉花的纖維長度,得到數(shù)據(jù)如下圖頻率分布表所示:

          纖維長度

          根數(shù)

          1)若將頻率作為概率, 根據(jù)以上數(shù)據(jù),能否認(rèn)為該基地的這批棉花符合長絨棉占全部棉花的以上的要求?

          2)用樣本估計總體, 若這批榨花共有,基地提出了兩種銷售方案給采購商參考.方案一:不分等級賣出,每千克按元計算,方案二:棉花先分等級再銷售,分級后不同等級的棉花售價如下表:

          纖維長度

          售價

          從來購商的角度,請你幫他決策一下該用哪個方案.

          3)用分層抽樣的方法從長絨棉中抽取6根棉花,再從此根棉花中抽取兩根進(jìn)行檢驗.求抽到的兩根棉花只有一根是軍海1的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          已知拋物線的焦點為,上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時,為正三角形.

          )求的方程;

          )若直線,且有且只有一個公共點

          )證明直線過定點,并求出定點坐標(biāo);

          的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,為矩形的邊上一點,且,將沿折起到,使得.



          1)證明:平面平面

          2)若,求平面與平面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點是直線上的動點,為定點,點的中點,動點滿足,且,設(shè)點的軌跡為曲線.

          1)求曲線的方程;

          2)過點的直線交曲線,兩點,為曲線上異于的任意一點,直線,分別交直線兩點.是否為定值?若是,求的值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

          (2)設(shè)曲線經(jīng)過伸縮變換得到曲線,是曲線上任意一點,求點到曲線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

          1)求出2018年的利潤Lx)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

          22018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

          查看答案和解析>>

          同步練習(xí)冊答案