日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為F(-
          3
          ,0),且過D(2,0),設(shè)點A(1,
          1
          2
          ).
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)若P是橢圓上的動點,求線段PA中點M的軌跡方程.
          分析:(1)由左焦點為F(-
          3
          ,0)
          ,右頂點為D(2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,最后由橢圓的焦點在x軸上求得方程.
          (2)橢圓
          x2
          4
          +y2=1
          的參數(shù)方程是
          x=2cosα
          y=sinα
          ,α為參數(shù),故P(2cosα,sinα),設(shè)線段PA的中點為M(x,y),由A(1,
          1
          2
          ),P(2cosα,sinα),知x=
          1+cosα
          2
          ,y=
          1
          2
          +sinα
          2
          ,由此能求出線段PA中點M的軌跡方程.
          解答:解:(1)∵在平面直角坐標(biāo)系中的一個橢圓,
          它的中心在原點,左焦點為F(-
          3
          ,0),且過D(2,0),
          ∴橢圓的半長軸a=2,半焦距c=
          3
          ,則半短軸b=1.
          ∵橢圓的焦點在x軸上,
          ∴橢圓的標(biāo)準(zhǔn)方程為
          x2
          4
          +y2=1

          (2)橢圓
          x2
          4
          +y2=1
          的參數(shù)方程是:
          x=2cosα
          y=sinα
          ,α為參數(shù).
          ∴P(2cosα,sinα),
          設(shè)線段PA的中點為M(x,y),
          ∵A(1,
          1
          2
          ),P(2cosα,sinα),
          ∴x=
          1+cosα
          2
          ,y=
          1
          2
          +sinα
          2
          ,
          ∴cosα=2x-1,
          sinα=2y-
          1
          2

          ∴(2x-1)2+(2y-
          1
          2
          2=1.
          ∴線段PA中點M的軌跡方程是(2x-1)2+(2y-
          1
          2
          2=1.
          點評:本題主要考查橢圓標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與橢圓的位置關(guān)系等基礎(chǔ)知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-4:坐標(biāo)系與參數(shù)方程
          已知在平面直角坐標(biāo)系xOy內(nèi),點P(x,y)在曲線C:
          x=1+cosθ
          y=sinθ
          為參數(shù),θ∈R)上運動.以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
          π
          4
          )=0

          (Ⅰ)寫出曲線C的標(biāo)準(zhǔn)方程和直線l的直角坐標(biāo)方程;
          (Ⅱ)若直線l與曲線C相交于A、B兩點,點M在曲線C上移動,試求△ABM面積的最大值,并求此時M點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為F(-
          3
          ,0)
          ,且過點D(2,0).
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)點A(1,
          1
          2
          )
          ,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (坐標(biāo)系與參數(shù)方程選做題)已知在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
          x=
          3
          +3cosθ
          y=1+3sinθ
          ,(θ為參數(shù)),以ox為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
          π
          6
          )
          =0,則圓C截直線l所得的弦長為
          4
          2
          4
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知在平面直角坐標(biāo)系中,O(0,0),A(1,-2),B(1,1),C(2,-1),動點M(x,y)滿足條件
          -2≤
          OM
          OA
          ≤2
          1≤
          OM
          OB
          ≤2
          ,則z=
          OM
          OC
          的最大值為( 。
          A、-1B、0C、3D、4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知在平面直角坐標(biāo)系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
          3
          ,0)
          ,右頂點為D(2,0),設(shè)點A(1,
          1
          2
          )

          (Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
          (Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案