日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,已知直線與圓O:相切.

          (1)直線l過點(diǎn)(2,1)且截圓O所得的弦長為,求直線l的方程;

          (2)已知直線y=3與圓O交于A,B兩點(diǎn),P是圓上異于A,B的任意一點(diǎn),且直線AP,BPy軸相交于M,N點(diǎn).判斷點(diǎn)M、N的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,說明理由.

          【答案】(1);(2)見解析.

          【解析】

          (1)記圓心到直線l的距離為d,利用垂徑定理求得d.當(dāng)直線l與x軸垂直時,直線l的方程為x=2,滿足題意;當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程為y﹣1=k(x﹣2),利用圓心到直線的距離列式求得k,則直線方程可求;

          (2)設(shè)P(x1,y1),由直線y=3與圓O交于A、B兩點(diǎn),不妨取A(1,3),B(﹣1,3),分別求出直線PA、PB的方程,進(jìn)一步得到M,N的坐標(biāo),由P在圓上,整體運(yùn)算可得為定值.

          直線x﹣3y﹣10=0與圓O:x2+y2=r2(r>0)相切,

          圓心O到直線x﹣3y﹣10=0的距離為r=

          (1)記圓心到直線l的距離為d,∴d=

          當(dāng)直線l與x軸垂直時,直線l的方程為x=2,滿足題意;

          當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程為y﹣1=k(x﹣2),即kx﹣y+(1﹣2k)=0.

          ,解得k=﹣,此時直線l的方程為3x+4y﹣10=0.

          綜上,直線l的方程為x=2或3x+4y﹣10=0;

          (2)點(diǎn)M、N的縱坐標(biāo)之積為定值10.

          設(shè)P(x1,y1),

          直線y=3與圓O交于A、B兩點(diǎn),不妨取A(1,3),B(﹣1,3),

          直線PA、PB的方程分別為y﹣3=,y﹣3=

          令x=0,得M(0,),N(0,),

          (*).

          點(diǎn)P(x1,y1)在圓C上,,即

          代入(*)式,得為定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實(shí)施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計(jì)情況如表:

          性別屬性

          同意父母生“二孩”

          反對父母生“二孩”

          合計(jì)

          男生

          10

          女生

          30

          合計(jì)

          100

          請補(bǔ)充完整上述列聯(lián)表;

          根據(jù)以上資料你是否有把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由.

          參考公式與數(shù)據(jù):,其中

          k

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱的所有棱長都是2,平面ABC,D,E分別是AC,的中點(diǎn).

          (1)求證:;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列中,,其前項(xiàng)和滿足:.

          1)求數(shù)列的通項(xiàng)公式;

          2)設(shè),求證: ;

          3)設(shè)(為非零整數(shù),),是否存在確定的值,使得對任意,有恒成立.若存在求出的值,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):平面內(nèi)到兩個定點(diǎn)的距離之比為定值的點(diǎn)所形成的圖形是圓.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系中,,點(diǎn)滿足.設(shè)點(diǎn)所構(gòu)成的曲線為,下列結(jié)論正確的是( )

          A.的方程為

          B.上存在點(diǎn),使得到點(diǎn)的距離為

          C.上存在點(diǎn),使得

          D.上存在點(diǎn),使得

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為坐標(biāo)原點(diǎn),,.

          求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

          將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,

          1)當(dāng)時,求的最大值和最小值;

          2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn),圓,點(diǎn)是圓上一動點(diǎn), 的垂直平分線與交于點(diǎn).

          1)求點(diǎn)的軌跡方程;

          2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率不為0的直線交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明直線過定點(diǎn),并求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知無窮數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為 .

          (1)如果,且對于一切正整數(shù),均有,求;

          (2)如果對于一切正整數(shù),均有,求

          (3)如果對于一切正整數(shù),均有,證明: 能被8整除.

          查看答案和解析>>

          同步練習(xí)冊答案