【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間
上為增函數(shù),求
的取值范圍;
(2)當且
時,不等式
在
上恒成立,求
的最大值.
【答案】(1)(2)
【解析】
試題分析:(1)依題意可得,函數(shù)
在區(qū)間
上為增函數(shù)等價于
在
上恒成立,即
在
上恒成立,從而可得
的取值范圍;(2)不等式
在
上恒成立等價于
對任意
恒成立,令
,利用導數(shù)研究函數(shù)
的單調(diào)性,從而可得
的最小值,即可求得
的最大值.
試題解析:(1)依題意可得.
∵函數(shù)在區(qū)間
上為增函數(shù)
∴在
上恒成立,即
在
上恒成立,即
在
上恒成立,而
.
∴,即
的取值范圍為
.
(2)當時,
.
∵
∴原不等式可化為,即
對任意
恒成立.
令,則
.
令,則
.
∴在
上單調(diào)遞增.
∵,
∴ 存在使
,即
,即當
時,
,即
;
當時,
,即
.
∴在
上單調(diào)遞減,在
上單調(diào)遞增.
由,得
,
∴
∵
∴.
科目:高中數(shù)學 來源: 題型:
【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為非負實數(shù),函數(shù).
(1)當時,畫出函數(shù)
的草圖,并寫出函數(shù)
的單調(diào)遞增區(qū)間;
(2)若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,每次抽獎都是從裝有個紅球、
個白球的甲箱和裝有
個紅球、
個白球的乙箱中,各隨機摸出一個球,在摸出的
個球中,若都是紅球,則獲得一等獎;若只有
個紅球,則獲得二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎次能獲獎的概率;
(2)若某顧客有次抽獎機會,記該顧客在
次抽獎中獲一等獎的次數(shù)為
,求
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,
為等邊三角形,
,
,且
,
,
,
為
中點.
(1)求證:平面平面
;
(2)若線段上存在點
,使得二面角
的大小為
,求
的值;
(3)在(2)的條件下,求點到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A. “若,則
”的否命題為真命題
B. 函數(shù)的最小值為2
C. 命題“若,則
”的逆否命題為真命題
D. 命題“”的否定是:“
”。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級開設了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機抽取了5名學生校本課程的學分,統(tǒng)計如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學生學分的方差,計算兩個班學分的方差.得
______,并由此可判斷成績更穩(wěn)定的班級是______班.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com