日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù))

          (1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;

          (2)當(dāng))時(shí)在曲線上對應(yīng)的點(diǎn)為,若的面積為,求點(diǎn)的極坐標(biāo),并判斷是否在曲線上(其中點(diǎn)為半圓的圓心)

          【答案】(1)曲線的普通方程為,曲線的極坐標(biāo)方程為,( );(2)見解析.

          【解析】試題分析:1曲線的極坐標(biāo)方程為兩邊同乘以,利用 即可得曲線的直角坐標(biāo)方程,利用代入法將曲線的參數(shù)方程消去參數(shù)可得普通方程,再化成極坐標(biāo)方程可即可;2設(shè)的極坐標(biāo)為,利用的面積為,可求出點(diǎn)的極坐標(biāo),代入曲線的極坐標(biāo)方程檢驗(yàn)是否成立即可.

          試題解析(1)曲線的普通方程為,

          曲線的極坐標(biāo)方程為: ,( ),

          (2)設(shè)的極坐標(biāo)為,(

          ,

          所以點(diǎn)的極坐標(biāo)為,符合方程,

          所以點(diǎn)在曲線上.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          (Ⅰ)求不等式的解集;

          (Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù),求

          最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)求曲線在點(diǎn)處的切線的斜率

          (Ⅱ)判斷方程的導(dǎo)數(shù)在區(qū)間內(nèi)的根的個(gè)數(shù),說明理由

          (Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

          (2)若函數(shù)在定義域上為單調(diào)增函數(shù)

          ①求最大整數(shù)值

          ②證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中, 、分別為、的中點(diǎn), , .

          (1)求證: 平面;

          (2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)求經(jīng)過橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;

          (2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          對任意的, 恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知兩個(gè)正方形ABCDDCEF不在同一平面內(nèi),MN分別為AB,DF的中點(diǎn).

          (1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

          (2)用反證法證明:直線MEBN是兩條異面直線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點(diǎn),FB1C1的中點(diǎn).

          (1)求證:A1F∥平面ECC1;

          (2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案