日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•黃浦區(qū)二模)如圖所示的幾何體,是由棱長為2的正方體ABCD-A1B1C1D1截去一個角后所得的幾何體.
          (1)試畫出該幾何體的三視圖;(主視圖投影面平行平面DCC1D1,主視方向如圖所示.請將三張視圖按規(guī)定位置畫在答題紙的相應(yīng)虛線框內(nèi))
          (2)若截面△MNH是邊長為2的正三角形,求該幾何體的體積V.
          分析:(1)根據(jù)三視圖的定義可畫出該幾何體的三視圖
          (2)由正三角形△MNH是的邊長,先求出截掉的三棱錐的棱長和體積,用正方體的體積減掉小三棱錐的體積即可
          解答:解(1)

          (2)設(shè)原正方體中由頂點(diǎn)B1出發(fā)的三條棱的棱長分別為B1M=x,B1N=y,B1H=z.
          結(jié)合題意,可知,
          x2+y2=4
          y2+z2=4
          x2+z2=4
          ,解得x=y=z=
          2

          因此,所求幾何體的體積V=V正方體-VB1-MNH=23-
          1
          3
          1
          2
          •(
          2
          )3
          =8-
          2
          3
          點(diǎn)評:本題考查由三視圖求面積、體積,求解的關(guān)鍵是由視圖得出幾何體的長、寬、高等性質(zhì),熟練掌握各種類型的幾何體求體積的公式是關(guān)鍵
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•黃浦區(qū)二模)已知α、β∈(0,
          π
          2
          ),若cos(α+β)=
          5
          13
          ,sin(α-β)=-
          4
          5
          ,則cos2α=
          63
          65
          63
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
          (1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
          (2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點(diǎn),試將kn表示成n的函數(shù).
          (3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•黃浦區(qū)二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點(diǎn),C1是圓柱上底面弧A1B1的中點(diǎn),那么異面直線AC1與BC所成角的正切值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•黃浦區(qū)二模)已知函數(shù)f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
          ①當(dāng)且僅當(dāng)a=0時,f(x)是偶函數(shù);
          ②函數(shù)f(x)一定存在零點(diǎn);
          ③函數(shù)在區(qū)間(-∞,a]上單調(diào)遞減;
          ④當(dāng)0<a<1時,函數(shù)f(x)的最小值為a-a2
          那么所有真命題的序號是
          ①④
          ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•黃浦區(qū)二模)函數(shù)f(x)=log
          1
          2
          (2x+1)
          的定義域為
          (-
          1
          2
          ,+∞)
          (-
          1
          2
          ,+∞)

          查看答案和解析>>

          同步練習(xí)冊答案