日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•黃浦區(qū)二模)函數(shù)f(x)=log
          1
          2
          (2x+1)
          的定義域為
          (-
          1
          2
          ,+∞)
          (-
          1
          2
          ,+∞)
          分析:根據(jù)對數(shù)函數(shù)的性質可知對數(shù)函數(shù)的真數(shù)大于0,建立不等關系,解之即可求出所求.
          解答:解:∵2x+1>0
          ∴x>-
          1
          2

          即函數(shù)f(x)=log
          1
          2
          (2x+1)
          的定義域為(-
          1
          2
          ,+∞)
          故答案為:(-
          1
          2
          ,+∞)
          點評:本題主要考查了對數(shù)函數(shù)的定義域,掌握對數(shù)函數(shù)的性質是關鍵,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2012•黃浦區(qū)二模)已知α、β∈(0,
          π
          2
          ),若cos(α+β)=
          5
          13
          ,sin(α-β)=-
          4
          5
          ,則cos2α=
          63
          65
          63
          65

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
          (1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
          (2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
          (3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•黃浦區(qū)二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點,C1是圓柱上底面弧A1B1的中點,那么異面直線AC1與BC所成角的正切值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•黃浦區(qū)二模)已知函數(shù)f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
          ①當且僅當a=0時,f(x)是偶函數(shù);
          ②函數(shù)f(x)一定存在零點;
          ③函數(shù)在區(qū)間(-∞,a]上單調遞減;
          ④當0<a<1時,函數(shù)f(x)的最小值為a-a2
          那么所有真命題的序號是
          ①④
          ①④

          查看答案和解析>>

          同步練習冊答案