日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,
          (1)求函數(shù)f(x)的表達(dá)式;
          (2)求函數(shù)f(x)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間?
          (3)求函數(shù)f(x)在閉區(qū)間[-2,+2]上的最大值與最小值?
          分析:(1)已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,即f(1)=-1,f′(1)=0,所以先求導(dǎo)函數(shù),再代入列方程組,即可解得a、b的值
          (2)分別解不等式f′(x)>0和f′(x)<0,即可得函數(shù)f(x)的單調(diào)增區(qū)間與單調(diào)遞減區(qū)間
          (3)由(2)可得函數(shù)f(x)在[-2,2]上的單調(diào)性,從而求出函數(shù)在[-2,2]上的極大值和極小值,最后比較端點(diǎn)值f(-2),f(2)與極值的大小確定函數(shù)在[-2,2]上的最大值與最小值
          解答:解:(1)∵f′(x)=3x2-6ax+2b,函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,
          ∴f(1)=-1,f′(1)=0
          ∴1-3a+2b=-1,3-6a+2b=0
          解得a=
          1
          3
          ,b=-
          1
          2

          ∴f(x)=x3-x2-x
          (2)∵f′(x)=3x2-2x-1
          ∴由f′(x)=3x2-2x-1>0得x∈(-∞,-
          1
          3
          )∪(1,+∞)

          由f′(x)=3x2-2x-1<0得x∈(-
          1
          3
          ,1)

          ∴函數(shù)f(x)的單調(diào)增區(qū)間為:(-∞,-
          1
          3
          ), (1,+∞)
          ,減區(qū)間為:(-
          1
          3
          ,1)

          (3)由(2)可得函數(shù)f(x)在[-2,-
          1
          3
          )上是增函數(shù),在[-
          1
          3
          ,1)上是減函數(shù),在[1,2]上是增函數(shù)
          且f(-2)=-10,f(-
          1
          3
          )=
          5
          27
          ,f(1)=-1,f(2)=2
          ∴函數(shù)f(x)在閉區(qū)間[-2,+2]上的最大值f(2)=2
          最小值為f(-2)=-10
          點(diǎn)評:本題考察了導(dǎo)數(shù)在求函數(shù)極值中的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,及利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值的方法
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案