日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
          (1)求圓C的方程;
          (2)過點的直線與圓C交于不同的兩點且為時,求:的面積.
          (1);(2).

          試題分析:(1)半徑已知,所以只需確定圓心即可,設(shè)圓心,因為直線與圓相切,利用圓心到直線的距離列式求;(2)從可以看出,這是韋達定理的特征,故把直線方程設(shè)為,與(1)所求圓的方程聯(lián)立,得關(guān)于的一元二次方程,用含有的代數(shù)式表示出,進而利用列方程,求,然后用弦長公式求,用點到直線的距離公式求高,面積可求.
          試題解析:(I)設(shè)圓心為,則圓C的方程為
          因為圓C與相切    所以 解得:(舍)
          所以圓C的方程為:                                     4分
          (II)依題意:設(shè)直線l的方程為:

          ∵l與圓C相交于不同兩點
               

          又∵ ∴
          整理得: 解得(舍)
          ∴直線l的方程為:                                          8分
          圓心C到l的距離  在△ABC中,|AB|=
          原點O到直線l的距離,即△AOB底邊AB邊上的高
                                   12分
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知定點,,直線(為常數(shù)).
          (1)若點到直線的距離相等,求實數(shù)的值;
          (2)對于上任意一點,恒為銳角,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知是拋物線上的點,的焦點, 以為直徑的圓軸的另一個交點為.
          (Ⅰ)求的方程;
          (Ⅱ)過點且斜率大于零的直線與拋物線交于兩點,為坐標原點,的面積為,證明:直線與圓相切.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知圓C:與直線l:,且直線l被圓C截得的弦長為
          (Ⅰ)求的值;
          (Ⅱ)當時,求過點(3,5)且與圓C相切的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          直線與圓C:交于兩點,則的面積為(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          過點的直線被圓所截得的弦長為,則直線的方程為_______(寫直線方程的一般式).

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          直線與圓相切,則實數(shù)等于(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          在極坐標系中,直線與圓的位置關(guān)系是(     )
          A.相交B.相切
          C.相離D.無法確定

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          的圓心到直線3x+4y+14=0的距離是        

          查看答案和解析>>

          同步練習冊答案