日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義方程f(x)=f’(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,如果函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=cosx(x∈0,π)的“新駐點”分別為α,β,γ,那么α,β,γ的大小關(guān)系是


          1. A.
            α<β<γ
          2. B.
            α<γ<β
          3. C.
            γ<α<β
          4. D.
            β<α<γ
          D
          解:根據(jù)題意可得:g′(x)=1,h′(x)="1" x+1 ,φ′(x)=-sinx,
          所以α=1,ln(β+1)=,cosγ=-sinγ,
          ①∵ln(β+1)= ,,
          ∴(β+1)β+1=e,
          當(dāng)β≥1時,β+1≥2,
          ∴β+1≤  <2,
          ∴β<1,這與β≥1矛盾,
          ∴0<β<1;
          ②∵cosγ=-sinγ,γ∈( ,π),
          ∴γ= >1.
          ∴γ>α>β.
          故選D.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:天津市新人教A版數(shù)學(xué)2012屆高三單元測試12:函數(shù)與方程 新人教A版 題型:022

          方程f(x)=0的根稱為函數(shù)f(x)的零點,定義R+在上的函數(shù)f(x),其導(dǎo)函數(shù)的圖像如圖所示,且f(x1)f(x2)<0,則函數(shù)f(x)的零點個數(shù)是_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:山東省東營市2012屆高三一模(3月)數(shù)學(xué)文科試題 題型:044

          已知定義在區(qū)間[-2,t](t>-2)上的函數(shù)f(x)=(x2-3x+3)ex

          (Ⅰ)當(dāng)t>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;

          (Ⅱ)設(shè)m=f(-2),n=f(t).試證明:m<n;

          (Ⅲ)設(shè)g(x)=f(x)+(x-2)ex,當(dāng)x>1時試判斷方程g(x)=x根的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三五月適應(yīng)性考試(三)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

          定義方程f(x)=f’(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,如果函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=cosx(x∈0,π)的“新駐點”分別為α,β,γ,那么α,β,γ的大小關(guān)系是(  )

          A、α<β<γ         B、α<γ<β    C、γ<α<β      D、β<α<γ

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:單選題

          定義方程f(x)=f’(x)的實數(shù)根x0叫做函數(shù)f(x)的"新駐點”,如果函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=cosx(x∈(0,π))的新駐點為α,β,γ,那么α,β,γ的大小關(guān)系是
          [     ]
          A.α<β<γ
          B.α<γ<β
          C.γ<α<β
          D.β<α<γ

          查看答案和解析>>

          同步練習(xí)冊答案