日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,且經(jīng)過點,的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

          1)求橢圓的方程;

          2)求 面積的最大值,并求此時直線的方程.

           

          【答案】

          12

          【解析】

          試題分析:1)已知橢圓的離心率為即可得到的關(guān)系式,再結(jié)合橢圓過點,代入橢圓方程組成方程組可求解得到橢圓方程; 2 要求面積可先求兩個弦長度,是一直線與圓相交得到的弦長,可采用圓的弦長公式,是橢圓的弦長,使用公式求解,把面積表示成變量的函數(shù), 求其最值時可用換元法求解.對當斜率為0時要單獨討論.

          試題解析:1)由已知得到,所以,.

          又橢圓經(jīng)過點,,

          解得,

          所以橢圓的方程是

          2)因為直線且都過點

          ①當斜率存在且不為0,設(shè)直線,直線,,

          所以圓心到直線的距離為,所以直線被圓所截弦

          ,

          所以

          .

          所以.

          ,,

          ,,等號成立,

          面積的最大值為,此時直線的方程為

          ②當斜率為0,,此時

          的斜率不存在時,不合題意;

          綜上, 面積的最大值為,此時直線的方程為.

          考點:直線與圓的位置關(guān)系,弦長公式,換元法求函數(shù)最值.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為( 。
          A、
          1
          2
          B、
          2
          2
          C、
          3
          3
          D、以上均不對

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的離心率為
          1
          2
          ,焦點是(-3,0),(3,0),則橢圓方程為( 。
          A、
          x2
          36
          +
          y2
          27
          =1
          B、
          x2
          36
          -
          y2
          27
          =1
          C、
          x2
          27
          +
          y2
          36
          =1
          D、
          x2
          27
          -
          y2
          36
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在由圓O:x2+y2=1和橢圓C:
          x2
          a2
          +y2
          =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
          6
          3
          ,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
          (1)求橢圓C的方程;
          (2)是否存在直線l,使得
          OA
          OB
          =
          1
          2
          OM
          2
          ,若存在,求此時直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知橢圓的離心率為
          2
          2
          ,準線方程為x=±8,求這個橢圓的標準方程;
          (2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,A,B是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
          (1)若e=
          1
          2
          ,m=4,求橢圓C的方程;
          (2)設(shè)直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

          查看答案和解析>>

          同步練習(xí)冊答案