【題目】如圖,在四棱錐中,
為等邊三角形,平面
平面
,
,
,
為
的中點.
(1)求二面角的正弦值;
(2)若平面
,求
的值.
【答案】(1)(2)
.
【解析】試題分析:
(1)由題意可知,
,
,據(jù)此建立空間直角坐標(biāo)系,計算可得平面
的法向量為
,且平面
的一個法向量為
,據(jù)此計算可得二面角的正弦值為
.
(2)結(jié)合(1)中的空間直角坐標(biāo)系有,據(jù)此得到關(guān)于實數(shù)a的方程:
,解方程有:
.
試題解析:
(1)因為是等邊三角形,
為
的中點,所以
,
又因為平面平面
,平面
平面
,
平面
,
所以平面
,
又平面
,所以
,
取的中點
,連結(jié)
,
由題設(shè)知四邊形是等腰梯形,所以
,
由平面
,又
平面
,所以
,
建立如圖所示空間直角坐標(biāo)系,
則,
,
設(shè)平面的法向量為
,
則 ,即
令,則
,于是
,
又平面的一個法向量為
,設(shè)二面角
為
,
所以,
,
所以二面角的正弦值為.
(2)因為平面
,所以
,即
,
因為,
所以,
由及
,解得
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(分鐘)和銷售量
(件)的關(guān)系作了統(tǒng)計,得到如下數(shù)據(jù):
經(jīng)計算: ,
,
,
.
(1)該店主通過作散點圖,發(fā)現(xiàn)上架時間與銷售量線性相關(guān),請你幫助店主求出上架時間與銷售量的線性回歸方程(保留三位小數(shù)),并預(yù)測商品上架1000分鐘時的銷售量;
(2)從這11組數(shù)據(jù)中任選2組,設(shè)
且
的數(shù)據(jù)組數(shù)為
,求
的分布列與數(shù)學(xué)期望.
附:線性回歸方程公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)上購物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物.
(1)求這4個人中恰有2人去淘寶網(wǎng)購物的概率;
(2)求這4個人中去淘寶網(wǎng)購物的人數(shù)大于去京東商城購物的人數(shù)的概率:
(3)用X,Y分別表示這4個人中去淘寶網(wǎng)購物的人數(shù)和去京東商城購物的人數(shù),記,求隨機(jī)變量
的分布列與數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,函數(shù)f(x)=3+2sin xcos x+2cos2x且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|.
(1)當(dāng)a=2時,解不等式f(x)>x+1;
(2)若關(guān)于x的不等式f(x)+f(-x)< 有實數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的一個焦點與拋物線y2=-4x的焦點相同,且橢圓C上一點與橢圓C的左,右焦點F1,F2構(gòu)成的三角形的周長為
.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點,O為坐標(biāo)原點,△AOB的重心G滿足: ,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個“巧值點”,則下列函數(shù)中有“巧值點”的是________.
①f(x)=x2;②f(x)=e-x;③f(x)=lnx;④f(x)=tanx;⑤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(其中
為參數(shù)),以
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(其中
為常數(shù)).
(1)若直線與曲線
恰好有一個公共點,求實數(shù)
的值;
(2)若,求直線
被曲線
截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com