日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)(甲)如圖,已知斜三棱柱ABC-A1B1C1的側(cè)面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
          3
          ,又AA1⊥A1C,AA1=A1C.
          (1)求側(cè)棱A1A與底面ABC所成的角的大;
          (2)求側(cè)面A1B與底面所成二面角的大;
          (3)求點(diǎn)C到側(cè)面A1B的距離.
          (乙)在棱長(zhǎng)為a的正方體OABC-O'A'B'C'中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.
          (1)求證:A'F⊥C'E;
          (2)當(dāng)三棱錐B'-BEF的體積取得最大值時(shí),求二面角B'-EF-B的大。ńY(jié)果用反三角函數(shù)表示).
          分析:甲(1)由題意畫出圖形由于側(cè)面A1C⊥底面ABC,所以A1A與底面ABC所成的角為∠A1AC,解出即可;
          (2)由題意及圖形利用二面角平面角的概念即可求二面教的大小;
          (3)由題意利用三棱錐的等體積進(jìn)行輪換可得距離.
          乙(1)由于幾何體為長(zhǎng)方體,利用條件建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的空間坐標(biāo)利用向量的知識(shí)和等體積法求出距離;
          (2)利用條件及所給圖形利用二面角的平面角的定義,設(shè)出BF=x,BE=y,則x+y=a,利用均值不等式求出BE,BF的長(zhǎng)度,再在三角線中進(jìn)行求解出二面角的大。
          解答:(甲)(1)∵側(cè)面A1C⊥底面ABC,∴A1A在平面ABC上的射影是AC、A1A與底面ABC所成的角為∠A1AC.
          ∵A1A=A1C,A1A⊥A1C,∴∠A1AC=45°.

          精英家教網(wǎng)(2)作A1O⊥AC于O,則A1O⊥平面ABC,再作OE⊥AB于E,連接A1E,則A1E⊥AB,
          所以∠A1EO就是側(cè)面A1B與底面ABC所成二面角的平面角.
          在Rt△A1EO中,A1O=
          1
          2
          AC=
          3
          ,OE=
          1
          2
          BC=1
          ,
          tan∠A1EO=
          A1O
          OE
          =
          3
          .∠A1EO=60°.

          (3)設(shè)點(diǎn)C到側(cè)面A1B的距離為x.
          VA1-ABC=VC-A1BC
          1
          3
          A1O•S△ABC=
          1
          3
          •x•SA1BC?A1O•S△ABC=x•S△ABC
          .(*)
          A1O=
          3
          ,OE=1,∴A1E=
          3+1
          =2

          AB=
          (2
          3
          )
          2
          -22
          =2
          2
          ,∴SA1AB=
          1
          2
          •2
          2
          •2=2
          2

          S△ABC=
          1
          2
          ×2×2
          2
          =2
          2
          .∴由(*)式,得2
          2
          =x•2
          2
          =1
          .∴x=1

          精英家教網(wǎng)(乙)(1)證明:如圖,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系.
          設(shè)AE=BF=x,則A'(a,0,a),F(xiàn)(a-x,a,0),C'(0,a,a),E(a,x,0),
          A′F
          =(-x,a,-a),
          C′E
          =(a,x-a,-a).
          A′F
          C′E
          =-xa+a(x-a)+a2=0
          ,
          ∴A'F⊥C'E.

          (2)解:記BF=x,BE=y,則x+y=a,則三棱錐B'-BEF的體積為V=
          1
          6
          xya≤
          a
          b
          (
          x+y
          2
          )2=
          1
          24
          a2

          當(dāng)且僅當(dāng)x=y=
          a
          2
          時(shí),等號(hào)成立,因此,三棱錐B'-BEF的體積取得最大值時(shí),BE=BF=
          a
          2

          過B作BD⊥BF交EF于D,連接B'D,則B'D⊥EF.
          ∴∠B'DB是二面角B'-EF-B的平面角.在Rt△BEF中,直角邊BE=BF=
          a
          2
          ,BD是斜邊上的高,∴BD=
          2
          4

          在Rt△B'DB中,tan∠B′DB=
          B′B
          BD
          =2
          2
          .故二面角B'-EF-B的大小為arctan2
          2
          點(diǎn)評(píng):甲(1)此問重點(diǎn)考查了面面垂直的性質(zhì)定理及線面角的定義;
          (2)此問重點(diǎn)考查了二面角的平面角的概念及在三角形中求解三角形的角的大小;
          (3)此問重點(diǎn)考查了利用三棱錐的等體積可以進(jìn)行定點(diǎn)輪換求其體積進(jìn)而可以求點(diǎn)到面的距離.
          乙(1)此問重點(diǎn)考查了利用長(zhǎng)方體的特點(diǎn)建立空間直角坐標(biāo)系.利用向量的知識(shí)解決線線垂直的證明;
          (2)此問重點(diǎn)考查了利用向量的知識(shí)和設(shè)出變量利用均值不等式的求出最值時(shí)的線段長(zhǎng)度,進(jìn)而求解出二面角的大小,還考查了反三角的知識(shí).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2010年新教材高考數(shù)學(xué)模擬題詳解精編試卷(8)(解析版) 題型:解答題

          (甲)如圖,已知斜三棱柱ABC-A1B1C1的側(cè)面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=,又AA1⊥A1C,AA1=A1C.
          (1)求側(cè)棱A1A與底面ABC所成的角的大;
          (2)求側(cè)面A1B與底面所成二面角的大小;
          (3)求點(diǎn)C到側(cè)面A1B的距離.
          (乙)在棱長(zhǎng)為a的正方體OABC-O'A'B'C'中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.
          (1)求證:A'F⊥C'E;
          (2)當(dāng)三棱錐B'-BEF的體積取得最大值時(shí),求二面角B'-EF-B的大。ńY(jié)果用反三角函數(shù)表示).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案