日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)在[-1,1]上滿足f(-x)=-f(x)且是減函數(shù),α、β是銳角三角形的兩個(gè)內(nèi)角,且α≠β,則下列不等式中正確的是( 。
          分析:根據(jù)α、β是銳角三角形的兩個(gè)內(nèi)角,可得α+β>
          π
          2
          ,從而β>
          π
          2
          -α,求出正弦值,利用函數(shù)的定義可得結(jié)論.
          解答:解:∵α、β是銳角三角形的兩個(gè)內(nèi)角,
          ∴α+β>
          π
          2
          ,∴β>
          π
          2
          -α,
          ∴1>sinβ>cosα>0.
          ∵函數(shù)f(x)在[-1,1]上是減函數(shù),
          ∴f(sinβ)<f(cosα)
          故選B.
          點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,由銳角三角形的條件找到α+β>
          π
          2
          是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在[-1,1]上的奇函數(shù)f(x),當(dāng)x∈(0,1]時(shí),f(x)=
          2x4x+1

          (1)求函數(shù)f(x)在[-1,1]上的解析式;
          (2)試用函數(shù)單調(diào)性定義證明:f(x)在(0,1]上是減函數(shù);
          (3)要使方程f(x)=x+b,在[-1,1]上恒有實(shí)數(shù)解,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=lnx-ax(a∈R).
          (1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=alnx+|x-1|(a為常數(shù)).
          (1)當(dāng)a=
          2
          3
          時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)求函數(shù)f(x)在[1,+∞)上的最小值.
          (3)?x∈[
          1
          2
          ,+∞),使不等式f(x)<0成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=xlnx.
          (Ⅰ)求函數(shù)f(x)在[1,3]上的最小值;
          (Ⅱ)若存在x∈[
          1e
          ,e]
          (e為自然對(duì)數(shù)的底數(shù),且e=2.71828…)使不等式2f(x)≥-x2+ax-3成立,求實(shí)數(shù)a的取值范圍;
          (Ⅲ)若F(x)的導(dǎo)函數(shù)為f(x),試寫(xiě)出一個(gè)符合要求的F(x)(無(wú)需過(guò)程).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=-
          13
          ax3+x2+2(a≠0).
          (Ⅰ) 試討論函數(shù)f(x)的單調(diào)性;
          (Ⅱ) 若a>0,求函數(shù)f(x)在[1,2]上的最大值..

          查看答案和解析>>

          同步練習(xí)冊(cè)答案