日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+ax+b2,分別在下列條件下求不等式f(x)>0的解集為R的概率.
          (1)a,b∈Z,且-2≤a≤4,-2≤b≤4;
          (2)若a,b∈R,且0<a≤2,0<b≤2.
          分析:(1)本小題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從兩個(gè)集合中各取一個(gè)數(shù)字,共有49種結(jié)果,滿足條件的事件是不等式f(x)>0的解集為R,即a2<4b2,列舉出所有的事件數(shù),根據(jù)等可能事件的概率得到結(jié)果.
          (2)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是在區(qū)間(0,2]上任取兩個(gè)數(shù)a和b,寫出事件對(duì)應(yīng)的集合,做出面積,滿足條件的事件是求不等式f(x)>0的解集為R,根據(jù)二次方程的判別式寫出a,b要滿足的條件,寫出對(duì)應(yīng)的集合,做出面積,得到概率.
          解答:解:(1)由題意知本題是一個(gè)等可能事件的概率,
          試驗(yàn)發(fā)生包含的事件是從兩個(gè)集合中各取一個(gè)數(shù)字,共有49種結(jié)果,
          滿足條件的事件是求不等式f(x)>0的解集為R,
          即a2<4b2,
          當(dāng)b=-2,2,3,4時(shí),a有7種;
          當(dāng)b=-1,1時(shí),a有5種;
          當(dāng)b=0時(shí),a有1種;
          共有39種結(jié)果,
          ∴所求的概率是
          39
          49

          (2)由題意知本題是一個(gè)等可能事件的概率,
          ∵試驗(yàn)發(fā)生包含的事件是在區(qū)間[0,2]上任取兩個(gè)數(shù)a和b,
          事件對(duì)應(yīng)的集合是Ω={(a,b)|0≤a≤2,0≤b≤2}
          對(duì)應(yīng)的面積是sΩ=4
          滿足條件的事件是關(guān)于x的不等式f(x)>0的解集為R,
          即a2-4b2≤0,
          ∴a≤2b,
          事件對(duì)應(yīng)的集合是A={(a,b)|0≤a≤2,0≤b≤2,a≤2b}
          對(duì)應(yīng)的圖形的面積是sA=3
          ∴根據(jù)等可能事件的概率得到P=
          3
          4

          故答案為:
          3
          4
          點(diǎn)評(píng):本題考查等可能事件的概率,考查一元二次方程的解,考查列舉法的應(yīng)用,是一個(gè)綜合題目,本題解題的關(guān)鍵是弄清楚一元二次方程解的情況.本題考查幾何概型,古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過長(zhǎng)度、面積、和體積、的比值得到.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案