日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】201611日,我國(guó)全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持響應(yīng)”“猶豫不響應(yīng)態(tài)度的人數(shù)如表所示:

          響應(yīng)

          猶豫

          不響應(yīng)

          男性青年

          500

          300

          200

          女性青年

          300

          200

          300

          1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有97.5%的把握認(rèn)為猶豫與否與性別有關(guān);

          猶豫

          不猶豫

          總計(jì)

          男性青年

             

             

             

          女性青年

             

             

             

          總計(jì)

             

             

          1800

          2)以表中頻率作為概率,若從街頭隨機(jī)采訪青年男女各2人,求4人中響應(yīng)的人數(shù)恰好是不響應(yīng)的人數(shù)(不響應(yīng)的人數(shù)不為0)的2倍的概率.

          參考公式:

          參考數(shù)據(jù):

          PK2k0

          0.150

          0.100

          0.050

          0.025

          0.010

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          【答案】1)見解析,有97.5%的把握認(rèn)為猶豫與否與性別有關(guān).(2

          【解析】

          1)直接利用聯(lián)圖,利用獨(dú)立性檢驗(yàn)求出結(jié)果;(2)利用概率知識(shí)和排列組合知識(shí)的運(yùn)用求出結(jié)果.

          1

          猶豫

          不猶豫

          總計(jì)

          男性青年

          300

          700

          1000

          女性青年

          200

          600

          800

          總計(jì)

          500

          1300

          1800

          所以

          5.5385.024

          則有97.5%的把握認(rèn)為猶豫與否與性別有關(guān).

          2)男性青年中持響應(yīng)”“猶豫”“不響應(yīng)態(tài)度的概率為,,

          女性青年中持響應(yīng)”“猶豫”“不響應(yīng)態(tài)度的概率為,,

          因?yàn)檫x出的4人中響應(yīng)的人數(shù)恰好是不響應(yīng)人數(shù)的2倍.

          所以響應(yīng)的人數(shù)為2,不響應(yīng)的人數(shù)為1,猶豫的人數(shù)為1,

          所以所求的概率為P

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面 ABCD為矩形,側(cè)面為正三角形,且平面平面 EPD 中點(diǎn),AD=2.

          (1)證明平面AEC丄平面PCD;

          (2)若二面角的平面角滿足,求四棱錐 的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),求不等式的解集;

          2)若的圖像與軸圍成直角三角形,的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,EF分別是DD1,DB的中點(diǎn),G在棱CD上,且CGCD

          1)證明:EFB1C

          2)求cos,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面,直線.給出下列命題:

          ① 若,則; ② 若,則;

          ③ 若,則; ④ 若,則.

          其中是真命題的是_________.(填寫所有真命題的序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】由中央電視臺(tái)綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國(guó)首檔青春電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國(guó)的社會(huì)問題,受到青年觀眾的喜愛,為了了解觀眾對(duì)節(jié)目的喜愛程度,電視臺(tái)隨機(jī)調(diào)查了兩個(gè)地區(qū)的100名觀眾,得到如下的列聯(lián)表

          非常滿意

          滿意

          合計(jì)

          30

          合計(jì)

          已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為.

          (Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的地區(qū)的人數(shù)各是多少;

          (Ⅱ)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系

          (Ⅲ)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,的分布列和期望.

          附:參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

          (1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;

          (2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          1)當(dāng)ab1時(shí),求函數(shù)fx)的圖象在點(diǎn)(e2,fe2))處的切線方程;

          2)當(dāng)b1時(shí),若存在,使fx1f'x2+a成立,求實(shí)數(shù)a的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線C,O為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

          A. B. 3 C. D. 4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案