日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          (1)求過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于的直線方程;
          (2)求圓心在y軸上且經過點M(-2,3),N(2,1)的圓的方程.
          【答案】分析:(1)設直線方程為,由點P(-1,2)在直線上,知2a-b=ab,由,知ab=1,由此能求出直線方程.
          (2)由圓心C在線段MN的中垂線上,,MN的中點是(0,2),知MN的中垂線方程是y=2x+2,由此能求出圓的方程.
          解答:解:(1)由題意設直線方程為…(1分)
          ∵點P(-1,2)在直線上,
          ,
          則2a-b=ab…(2分)
          又∵,
          則ab=1…(3分)
          ,
          消去b整理得2a2-a-1=0,
          解得a=1或(舍去)…(5分)
          由ab=1解得b=1,
          故所求直線方程是x+y=1…(6分)
          (2)由題意圓心C在線段MN的中垂線上…(7分)
          ,
          MN的中點是(0,2)…(8分)
          ∴MN的中垂線方程是y=2x+2…(9分)
          令x=0則y=2,
          圓心C(0,2),
          半徑r=,…(11分)
          所求圓的方程為x2+(y-2)2=5.…(12分)
          點評:本題考查直線方程的求法和圓的方程的求法,是基礎題.解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          在平面直角坐標系xOy中,已知直線l:3x+y-5=0.
          (1)求過點P(1,1)且與直線l垂直的直線的方程;
          (2)設直線l上的點Q到直線x-y-1=0的距離為
          2
          ,求點Q的坐標.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知圓C的方程為:x2+y2=4.
          (1)求過點P(1,2)且與圓C相切的直線l的方程;
          (2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2
          3
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (1)求過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于
          12
          的直線方程;
          (2)求圓心在y軸上且經過點M(-2,3),N(2,1)的圓的方程.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (1)求過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于
          12
          的直線方程.
          (2)求過兩直線l1:x+y-4=0,l2:2x-y-5=0的交點,且與直線x-y+2=0平行及垂直的直線方程.

          查看答案和解析>>

          科目:高中數學 來源:2012-2013學年福建省三明一中高三(上)期中數學試卷(文科)(解析版) 題型:解答題

          已知圓C的方程為:x2+y2=4.
          (1)求過點P(1,2)且與圓C相切的直線l的方程;
          (2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2,求直線l的方程.

          查看答案和解析>>

          同步練習冊答案