日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,右焦點(diǎn)為,點(diǎn)分別是該橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸交點(diǎn)除外),直線交橢圓于另一點(diǎn),記直線, 的斜率分別為

          (1)當(dāng)直線過點(diǎn)時(shí),求的值;

          (2)求的最小值.

          【答案】(1) ;(2).

          【解析】試題分析:(1)利用橢圓的標(biāo)準(zhǔn)方程得到基本量,寫出點(diǎn)的坐標(biāo),寫出直線的方程為,即,求出P,聯(lián)立直線與橢圓求出M,計(jì)算向量的數(shù)量積;(2)設(shè),且,則直線的斜率為 聯(lián)立直線與橢圓的方程,求出M的坐標(biāo),從而,然后利用均值不等式即可求出.

          試題解析:

          (1)由橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍得

          由題意,焦點(diǎn),當(dāng)直線過點(diǎn)時(shí),則直線的方程為,即,令,則

          聯(lián)立,解得,或(舍),即

          因?yàn)?/span>

          所以

          (2)設(shè),且,則直線的斜率為

          則直線的方程為

          聯(lián)立,化簡(jiǎn)得,解得,

          所以,

          所以的最小值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽1人為優(yōu)秀的概率為.

          優(yōu)秀

          非優(yōu)秀

          合計(jì)

          甲班

          10

          乙班

          30

          合計(jì)

          110

          Ⅰ.請(qǐng)完成上面的列聯(lián)表;

          Ⅱ.根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.

          參考公式與臨界值表:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積為

          (1)求點(diǎn)的軌跡方程;

          (2)設(shè)點(diǎn)的軌跡為,點(diǎn)是軌跡為上不同于的兩點(diǎn),且滿足,求證:的面積為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

          組號(hào)

          1

          2

          3

          4

          5

          溫差

          10

          11

          13

          12

          8

          發(fā)芽數(shù)(顆)

          23

          25

          30

          26

          16

          該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

          2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

          (參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】A在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),直線的方程為為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

          (1)求曲線和直線的極坐標(biāo)方程;

          (2)若直線與曲線交于兩點(diǎn),求

          已知不等式的解集為.

          (1)求的值;

          (2)若,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1當(dāng)時(shí),求的單調(diào)區(qū)間;

          2設(shè),是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍.

          3設(shè)函數(shù)有兩個(gè)極值點(diǎn),若恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市2010年至2016年新開樓盤的平均銷售價(jià)格(單位:千元/平米)的統(tǒng)計(jì)數(shù)據(jù)如下表:

          年份

          2010

          2011

          2012

          2013

          2014

          2015

          2016

          年份代號(hào)x

          1

          2

          3

          4

          5

          6

          7

          銷售價(jià)格y

          3

          3.4

          3.7

          4.5

          4.9

          5.3

          6

          (1)求關(guān)于的線性回歸方程;

          (2)利用(1)中的回歸方程,分析2010年至2016年該市新開樓盤平均銷售價(jià)格的變化情況,并預(yù)測(cè)該市2018年新開樓盤的平均銷售價(jià)格.

          附:參考數(shù)據(jù)及公式: , .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).

          1討論的單調(diào)性;

          2若函數(shù)的圖象與直線交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明: 為函數(shù)的導(dǎo)函數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)上有最大值1和最小值0,設(shè).

          (1)求的值;

          (2)若不等式上有解,求實(shí)數(shù)的取值范圍;

          (3)若方程 (為自然對(duì)數(shù)的底數(shù))有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案