日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知M是函數(shù)y=4-x2(1<x<2)的圖象C上一點,過M點作曲線C的切線與x軸、y軸分別交于點A,B,O是坐標原點,求△AOB面積的最小值.
          分析:因為M是函數(shù)y=4-x2(1<x<2)的圖象C上一點,設(shè)出M的坐標,利用y′求出過M點曲線C的切線斜率k并寫出切線方程,就能得到A和B兩點的坐標,根據(jù)
          OA×OB
          2
          得出三角形的面積與m的函數(shù)關(guān)系式S,令S′=0求出穩(wěn)定點,在0<m<2區(qū)間內(nèi)分區(qū)間討論函數(shù)的增減性,最后求出S的最小值即可.
          解答:解:∵y=4-x2
          ∴y'=-2x.
          設(shè)M(m,4-m2),則過M點曲線C的切線斜率k=-2m.
          ∴切線方程y-(4-m2)=-2m(x-m). 由x=0,得y=4+m2,B(0,4+m2).由y=0x=
          4+m2
          2m
          ,A(
          4+m2
          2m
          ,0),其中0<m<2.
          設(shè)△AOB的面積為S,則S=S=
          1
          2
          |4+m2|•|
          4+m2
          2m
          |=
          (4+m2)2
          4m
          =
          m4+8m2+16
          4m
          ,(0<m<2).

          S′=
          (4m3+16m)m-(m4+8m2+16)
          4m2
          =
          3m4+8m2-16
          4m2
          .

          S′=0,得3m4+8m2-16=0,解得m=
          2
          3
          3
          ∈(0,2).

          m∈(0,
          2
          3
          3
          )時,S′<0,S在區(qū)間(0,
          2
          3
          3
          )
          上為減函數(shù);
          m∈(
          2
          3
          3
          ,2)時,S′>0,S在區(qū)間(
          2
          3
          3
          ,2)
          上為增函數(shù);
          當m=
          2
          3
          3
          時S取得最小值,最小值為Smin=S(
          2
          3
          3
          )=
          32
          3
          9
          .
          點評:本題考查曲線切線方程的寫法以及導數(shù)為零時函數(shù)的穩(wěn)定點判斷函數(shù)的增減性,在閉區(qū)間利用導數(shù)求最值的方法.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:0103 期末題 題型:解答題

          如圖,已知M是函數(shù)y=4-x2(0<x<2)圖像C上一點,過M點作曲線C的切線與x軸、y軸分別交于點A、B,O是坐標原點,求△AOB面積的最小值。

          查看答案和解析>>

          科目:高中數(shù)學 來源:廣東省模擬題 題型:解答題

          如圖,已知M是函數(shù)y=4﹣x2(1<x<2)的圖象C上一點,過M點作曲線C的切線與x軸、y軸分別交于點A,B,O是坐標原點,求△AOB面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年河北省衡水市衡水中學高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

          如圖,已知M是函數(shù)y=4-x2(1<x<2)的圖象C上一點,過M點作曲線C的切線與x軸、y軸分別交于點A,B,O是坐標原點,求△AOB面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年廣東省廣州市東風中學高三數(shù)學綜合訓練試卷8(理科)(解析版) 題型:解答題

          如圖,已知M是函數(shù)y=4-x2(1<x<2)的圖象C上一點,過M點作曲線C的切線與x軸、y軸分別交于點A,B,O是坐標原點,求△AOB面積的最小值.

          查看答案和解析>>

          同步練習冊答案