日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線y=-2上有一個動點Q,過Q作直線l垂直于x軸,動點P在直線l上,且,記點P的軌跡為C1,
          (1)求曲線C1的方程;
          (2)設(shè)直線l與x軸交于點A,且,試判斷直線PB與曲線C1的位置關(guān)系,并證明你的結(jié)論;
          (3)已知圓C2:x2+(y-a)2=2,若C1、C2在交點處的切線相互垂直,求a的值.
          【答案】分析:(1)先設(shè)P點坐標(biāo),進(jìn)而得出Q點坐標(biāo),再根據(jù)OP⊥OQ 得到∴,從而得解.
          (2)先求直線PB的方程,再代入x2=2y得x2-2xx+2y=0,利用△=4x2-8y=0,可得直線PB與曲線C1相切.
          (3)分別求出在C1上N點處切線的斜率為,C2上過N點的半徑的斜率,利用C1、C2在交點處的切線相互垂直,可建立方程,再利用點在圓上可解,
          解答:解:(1)設(shè)點P的坐標(biāo)為(x,y),則Q(x,-2),
          …(2分)
          ∴x2-2y=0,
          當(dāng)x=0時,P、O、Q三點共線,不符合題意,故x≠0.
          ∴曲線C的方程為x2=2y(x≠0).
          (2)設(shè)點P的坐標(biāo)(x,y),∴A(x,0)∵
          ∴直線PB的斜率…(5分)
          ∵x2=2y∴k=x∴直線PB的方程為y=xx-y…(6分)
          代入x2=2y得x2-2xx+2y=0,∵△=4x2-8y=0
          ∴直線PB與曲線C1相切.…(7分)
          (3)不妨設(shè)C1、C2的一個交點為N(x1,y1),C1的方程為
          則在C1上N點處切線的斜率為y′=x1.C2上過N點的半徑的斜率為

          ,得y1=-a,x12=-2a…(10分)
          ∵N(x1,y1)在圓C2上,∴-2a+4a2=2,∴或a=1
          ∵y1>0∴a<0,∴…(12分)
          點評:本題的考點是曲線與方程,主要考查直接法求軌跡方程,考查直線與曲線的位置關(guān)系,關(guān)鍵是利用直線與方程組成方程組,從而利用方程的思想研究.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點),記點P的軌跡為C.
          (1)求曲線C的方程;
          (2)若直線l2是曲線C的一條切線,當(dāng)點(0,2)到直線l2的距離最短時,求直線l2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線y=-2上有一個動點Q,過Q作直線l垂直于x軸,動點P在直線l上,且
          OP
          OQ
          ,記點P的軌跡為C1,
          (1)求曲線C1的方程;
          (2)設(shè)直線l與x軸交于點A,且
          OB
          =
          PA
          (
          OB
          ≠0)
          ,試判斷直線PB與曲線C1的位置關(guān)系,并證明你的結(jié)論;
          (3)已知圓C2:x2+(y-a)2=2,若C1、C2在交點處的切線相互垂直,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線y=-2上有一個動點Q,過Q作直線l垂直于x軸,動點P在直線l上,且,記點P的軌跡為C1.

          (1)求曲線C1的方程.

          (2)設(shè)直線l與x軸交于點A,且=(≠0).試判斷直線PB與曲線C1的位置關(guān)系,并證明你的結(jié)論.

          (3)已知圓C2:x2+(y-a)2=2,若C1、C2在交點處的切線互相垂直,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知直線y=-2上有一個動點Q,過Q作直線l垂直于x軸,動點P在直線l上,且
          OP
          OQ
          ,記點P的軌跡為C1,
          (1)求曲線C1的方程;
          (2)設(shè)直線l與x軸交于點A,且
          OB
          =
          PA
          (
          OB
          ≠0)
          ,試判斷直線PB與曲線C1的位置關(guān)系,并證明你的結(jié)論;
          (3)已知圓C2:x2+(y-a)2=2,若C1、C2在交點處的切線相互垂直,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點),記點P的軌跡為C.
          (1)求曲線C的方程;
          (2)若直線l2是曲線C的一條切線,當(dāng)點(0,2)到直線l2的距離最短時,求直線l2的方程.

          查看答案和解析>>

          同步練習(xí)冊答案