日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a∈R,函數(shù)f(x)=x|x-a|,
          (Ⅰ)當(dāng)a=2時,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)當(dāng)a>2時,求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值;
          (Ⅲ)設(shè)a≠0,函數(shù)f(x)在(m,n)上既有最大值又有最小值,請分別求出m、n的取值范圍(用a表示).
          【答案】分析:(I)將a=2代入函數(shù)的解析得出f(x)=x|x-2|,將其變?yōu)榉侄魏瘮?shù),利用二次函數(shù)的圖象與性質(zhì)研究其單調(diào)性即可
          (Ⅱ)當(dāng)a>2時,函數(shù)y=f(x)在區(qū)間[1,2]上解析式是確定的,去掉絕對號后根據(jù)二次函數(shù)的性質(zhì)確定其單調(diào)性,再求最值.
          (Ⅲ)a≠0,函數(shù)f(x)在(m,n)上既有最大值又有最小值說明在函數(shù)最值不在區(qū)間端點處取得,在這個區(qū)間內(nèi)必有兩個極值,由函數(shù)的性質(zhì)確定出極值,由于極值即為最值,故可借助函數(shù)的圖象得m、n的取值范圍.
          解答:解:(Ⅰ)當(dāng)a=2時,f(x)=x|x-2|=
          由二次函數(shù)的性質(zhì)知,單調(diào)遞增區(qū)間為(-∞,1],[2,+∞)(開區(qū)間不扣分)
          (Ⅱ)因為a>2,x∈[1,2]時,所以f(x)=x(a-x)=-x2+ax=
          當(dāng)1<,即2<a≤3時,f(x)min=f(2)=2a-4
          當(dāng),即a>3時,f(x)min=f(1)=a-1

          (Ⅲ)

          ①當(dāng)a>0時,圖象如上圖左所示

          ,
          ②當(dāng)a<0時,圖象如上圖右所示

          ,
          點評:本題考點是函數(shù)的最值及其幾何意義,綜合考查了二次函數(shù)的圖象,最值等知識以及配方法求最值的技巧.解題時數(shù)形結(jié)合,轉(zhuǎn)化靈活,綜合性很強(qiáng).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a∈R,函數(shù)f(x)=
          1
          12
          x3+
          a+1
          2
          x2+(4a+1)x

          (Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
          (Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調(diào)函數(shù),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
          (1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
          (2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a∈R,函數(shù)f(x)=
          a
          x
          +lnx-1,g(x)=(lnx-1)
          e
          x
           
          +x
          (其中e為自然對數(shù)的底).
          (1)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
          (2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為
          3x+y=0
          3x+y=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
          (1)求曲線y=f(x)在點(1,f(1))處的切線方程;
          (2)當(dāng)x∈[0,2]時,求|f(x)|的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案