日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知以點C(t, )(t∈R且t≠0)為圓心的圓經(jīng)過原點O,且與x軸交于點A,與y軸交于點B.
          (1)求證:△AOB的面積為定值.
          (2)設(shè)直線2x+y﹣4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
          (3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.

          【答案】
          (1)證明:由題意可得:圓的方程為: =t2+ ,化為:x2﹣2tx+y2 =0.

          與坐標軸的交點分別為:A(2t,0),B .∴SOAB= =4,為定值.


          (2)解:∵|OM|=|ON|,∴原點O在線段MN的垂直平分線上,設(shè)線段MN的中點為H,則C,H,O三點共線,

          OC的斜率k= = ,∴ ×(﹣2)=﹣1,解得t=±2,可得圓心C(2,1),或(﹣2,﹣1).

          ∴圓C的方程為:(x﹣2)2+(y﹣1)2=5,或(x+2)2+(y+1)2=5.


          (3)解:由(2)可知:圓心C(2,1),半徑r= ,點B(0,2)關(guān)于直線x+y+2=0的對稱點為B′(﹣4,﹣2),則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又點B′到圓上點Q的最短距離為|B′C|﹣r= =2 ,

          則|PB|+|PQ|的最小值為2

          直線B′C的方程為:y= x,此時點P為直線B′C與直線l的交點,

          故所求的點P


          【解析】(1)由題意可得:圓的方程為: =t2+ ,化為:x2﹣2tx+y2 =0.求出與坐標軸的交點,即可對稱SOAB.(2)由|OM|=|ON|,可得原點O在線段MN的垂直平分線上,設(shè)線段MN的中點為H,則C,H,O三點共線,

          可得t,即可對稱圓C的方程.(3)由(2)可知:圓心C(2,1),半徑r= ,點B(0,2)關(guān)于直線x+y+2=0的對稱點為B′(﹣4,﹣2),則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又點B′到圓上點Q的最短距離為|B′C|﹣r= =2 ,進而得出.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】記[x]表示不超過x的最大整數(shù),如[1.2]=1,[0.5]=0,則方程[x]﹣x=lnx的實數(shù)根的個數(shù)為(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過點(8,2)和(1,﹣1).
          (1)求f(x)的解析式;
          (2)[f(x)]2=3f(x),求實數(shù)x的值;
          (3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值時x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{bn}的前n項和是Sn , 且bn=1﹣2Sn , 又數(shù)列{an}、{bn}滿足點{an , 3 }在函數(shù)y=( x的圖象上.
          (1)求數(shù)列{an},{bn}的通項公式;
          (2)若cn=anbn+ ,求數(shù)列{an}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求滿足下列條件的曲線方程:
          (1)經(jīng)過兩條直線2x+y﹣8=0和x﹣2y+1=0的交點,且垂直于直線6x﹣8y+3=0的直線
          (2)經(jīng)過點C(﹣1,1)和D(1,3),圓心在x軸上的圓.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
          ②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
          ③已知函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=x2 , 則當x<0時,f(x)=﹣x2;
          ④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對稱,則對任意實數(shù)x,y都有f(xy)=f(x)+f(y).
          則正確結(jié)論的序號是(請將所有正確結(jié)論的序號填在橫線上).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC= ,AB=2BC=2,且AC⊥FB.
          (1)求證:平面EAC⊥平面FCB;
          (2)若線段AC上存在點M,使AE∥平面FDM,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將正弦曲線y=sinx上所有的點向右平移 π個單位長度,再將圖象上所有點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變),則所得到的圖象的函數(shù)解析式y(tǒng)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
          (1)求f(x)的解析式;
          (2)判斷f(x)的單調(diào)性,并用定義證明;
          (3)若f(lnm)+f(2lnn)≤1﹣3lnm,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案