日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為( )
          A.1﹣ln2
          B.
          C.1+ln2
          D.

          【答案】B
          【解析】解:∵函數(shù) 與函數(shù)y=ln(2x)互為反函數(shù),圖象關(guān)于y=x對(duì)稱,
          函數(shù) 上的點(diǎn) 到直線y=x的距離為 ,
          設(shè)g(x)= (x>0),則 ,
          ≥0可得x≥ln2,
          <0可得0<x<ln2,
          ∴函數(shù)g(x)在(0,ln2)單調(diào)遞減,在[ln2,+∞)單調(diào)遞增,
          ∴當(dāng)x=ln2時(shí),函數(shù)g(x)min=1﹣ln2,
          ,
          由圖象關(guān)于y=x對(duì)稱得:|PQ|最小值為
          故選B.
          由于函數(shù) 與函數(shù)y=ln(2x)互為反函數(shù),圖象關(guān)于y=x對(duì)稱,要求|PQ|的最小值,只要求出函數(shù) 上的點(diǎn) 到直線y=x的距離為 的最小值,
          設(shè)g(x)= ,利用導(dǎo)數(shù)可求函數(shù)g(x)的單調(diào)性,進(jìn)而可求g(x)的最小值,即可求.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).

          (1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);

          (2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

          (1)求曲線的普通方程及極坐標(biāo)方程;

          (2)直線的極坐標(biāo)方程是,射線 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時(shí),f(x)= ,若x∈[﹣4,﹣2)時(shí),f(x)≥ 恒成立,則實(shí)數(shù)t的取值范圍是(
          A.[﹣2,0)∪(0,1)
          B.[﹣2,0)∪[1,+∞)
          C.[﹣2,1]
          D.(﹣∞,﹣2]∪(0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
          (Ⅰ)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
          (Ⅱ)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且均為正三角形, 的重心.

          (1)求證: 平面;

          (2)求平面與平面所成銳二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )=
          (Ⅰ)求f(x)的解析式,
          (Ⅱ)用函數(shù)單調(diào)性的定義證明f(x)在(﹣1,1)上是增函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線l的參數(shù)方程: (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2=
          (1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
          (2)設(shè)曲線C與直線l交于A,B兩點(diǎn),若P(1,2),求|PA|+|PB|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) 的值域?yàn)榧螦,關(guān)于x的不等式 的解集為B,集合 ,集合D={x|m+1≤x<2m﹣1}(m>0)
          (1)若A∪B=B,求實(shí)數(shù)a的取值范圍;
          (2)若DC,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案